239
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Explosion suppression effect and mechanism analysis of ceramic foam in the horizontal pipe

, ORCID Icon, , &
Pages 7176-7193 | Received 02 May 2022, Accepted 13 Jul 2022, Published online: 31 Jul 2022

References

  • Ajrash, M. J., J. Zanganeh, and B. Moghtaderi. 2017. Deflagration of premixed methane air in a large-scale detonation tube. Process Safety and Environmental Protection 109:374–86. doi:10.1016/j.psep.2017.03.035.
  • Atkinson, G., E. Cowpe, J. Halliday, and D. Painter. 2017. A review of very large vapour cloud explosions: Cloud formation and explosion severity. Journal of Loss Prevention in the Process Industries 48:367–75. doi:10.1016/j.jlp.2017.03.021.
  • Boyd, M. G., T. P. Marshall, F. J. Martin, and S. J. Noesen. 1981. Explosion pressures in enclosures compartmented by porous barriers. Symposium (International) on Combustion 18 (1):1683–93. doi:10.1016/s0082-0784(81)80172-5.
  • Cao, W. G., W. J. Li, S. Yu, Y. Zhang, C. M. Shu, Y. F. Liu, J. W. Luo, L. T. Bu, and Y. X. Tan. 2021. Explosion venting hazards of temperature effects and pressure characteristics for premixed hydrogen-air mixtures in a spherical container. Fuel 290:120034. doi:10.1016/j.fuel.2020.120034.
  • Chen, P., and Y. D. Sun. 2017. Experiment study on quenching effect of foam metal on methane-air deflagration flame. Journal of Safety Science and Technology 13:37–41. doi:10.11731/j.1673-193x.2017.07.006.
  • Chen, Y., Q. Zhang, M. Li, M. Yuan, D. Wu, and X. Qian. 2019. Experimental study on explosion characteristics of DME-blended LPG mixtures in a closed vessel. Fuel 248:232–40. doi:10.1016/j.fuel.2019.03.091.
  • Ciccarelli, G. 2012. Explosion propagation in inert porous media. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370:647–66. doi:10.1098/rsta.2011.0346.
  • Cui, Y. Y., Z. R. Wang, K. B. Zhou, L. S. Ma, M. H. Liu, and J. C. Jiang. 2017. Effect of wire mesh on double-suppression of CH4/air mixture explosions in a spherical vessel connected to pipelines. Journal of Loss Prevention in the Process Industries 45:69–77. doi:10.1016/j.jlp.2016.11.017.
  • Cui, G., S. Wang, J. Liu, Z. Bi, and Z. Li. 2018. Explosion characteristics of a methane/air mixture at low initial temperatures. Fuel 234:886–93. doi:10.1016/j.fuel.2018.07.139.
  • Duan, Y. L., S. Wang, Y. L. Yang, and Y. B. Li. 2020. Experimental study on explosion of premixed methane-air with different porosity and distance from ignition position. Combustion Science and Technology 193 (12):2070–84. doi:10.1080/00102202.2020.1727900.
  • Guo, C., G. Thomas, J. Li, and D. Zhang. 2002. Experimental study of gaseous detonation propagation over acoustically absorbing walls. Shock Waves 11:353–59. doi:10.1007/s001930100113.
  • Huo, Y., and W. K. Chow. 2017. Flame propagation of premixed liquefied petroleum gas explosion in a tube. Applied Thermal Engineering 113:891–901. doi:10.1016/j.applthermaleng.2016.11.040.
  • Joo, H. I., K. Duncan, and G. Ciccarelli. 2006. Flame-quenching performance of ceramic foam. Combustion Science and Technology 178 (10–11):1755–69. doi:10.1080/00102200600788692.
  • Li, R. Z., R. J. Si, K. Gao, X. X. Qin, and L. X. Wen. 2018. Experimental study on the effect of explosion suppression in low-concentration gas transportation. Journal of Loss Prevention in the Process Industries 54:216–21. doi:10.1016/j.jlp.2018.04.005.
  • Li, Y., Q. Zhao, L. Liu, X. Chen, C. Huang, and B. Yuan. 2022. Investigation on the flame and explosion suppression of hydrogen/air mixtures by porous copper foams in the pipe with large aspect ratio. Journal of Loss Prevention in the Process Industries 76:104744. doi:10.1016/j.jlp.2022.104744.
  • Nemoto, T., S. Sasaki, and Y. Hakuraku. 1985. Thermal conductivity of alumina and silicon carbide ceramics at low temperatures. Cryogenics 25 (9):531–32. doi:10.1016/0011-2275(85)90080-3.
  • Nie, B. S., X. Q. He, R. M. Zhang, W. X. Chen, and J. F. Zhang. 2011. The roles of foam ceramics in suppression of gas explosion overpressure and quenching of flame propagation. Journal of Hazardous Materials 192 (2):741–47. doi:10.1016/j.jhazmat.2011.05.083.
  • Nie, B. S., L. L. Yang, and J. W. Wang. 2016. Experiments and mechanisms of gas explosion suppression with foam ceramics. Combustion Science and Technology 188 (11–12):2117–27. doi:10.1080/00102202.2016.1218161.
  • Nie, B. S., J. Gong, Z. Ge, C. Peng, L. Zhang, Y. Fan, R. Li, and C. Liu. 2021 1-24. Experimental study on explosion characteristics of ultra-low concentration methane mixed with dimethyl ether. Combustion Science and Technology 1–24. doi:10.1080/00102202.2021.1925659.
  • Niu, Y. H., B. M. Shi, and B. Y. Jiang. 2019. Experimental study of overpressure evolution laws and flame propagation characteristics after methane explosion in transversal pipe networks. Applied Thermal Engineering 154:18–23. doi:10.1016/j.applthermaleng.2019.03.059.
  • Parchovianský, M., D. Galusek, P. Švančárek, J. Sedláček, and P. Šajgalík. 2014. Thermal behavior, electrical conductivity and microstructure of hot pressed Al2O3/SiC nanocomposites. Ceramics International 40:14421–29. doi:10.1016/j.ceramint.2014.06.038.
  • Shao, J. W., C. J. Zhuang, Z. R. Wang, Y. N. Huang, and W. T. Lu. 2018. Explosion suppression effect of CH4/air by combined porous materials in a container piping system. Explosion and Shock Waves 38 (4):905–12. doi:10.11883/bzycj-2017-0064.
  • Sun, J. H., Y. Zhao, C. R. Wei, S. Xie, and D. H. Huang. 2011. The comparative experimental study of the porous materials suppressing the gas explosion. Procedia Engineering 26:954–60. doi:10.1016/j.proeng.2011.11.2262.
  • Sun, Y. M., B. Q. Lin, C. J. ZHu, Q. Liu, and Y. D. Hong. 2013. Analysis on evolution characteristics of explosion waveform in a confined space. Mining Safety & Environmental Protection 40 (5):1–4. doi:10.3969/j.1008-4495.2013.05.001.
  • Tang, C. L., S. Zhang, Z. B. Si, Z. H. Huang, K. M. Zhang, and Z. B. Jin. 2014. High methane natural gas/air explosion characteristics in confined vessel. Journal of Hazardous Materials 278:520–28. doi:10.1016/j.jhazmat.2014.06.047.
  • Vasil’ev, A. A. 1994. Near-limiting detonation in channels with porous walls. Combustion Explosion, and Shock Waves 30 (1):101–06. doi:10.1007/BF00787892.
  • Wang, G. Q., S. J. Huang, N. Ding, D. Luo, X. F. Huang, Y. Liu, and J. R. Xu. 2010. Characteristics of the effective thermal conductivity of highly porous ceramic foam. Proceedings of the CSEE 30 (11):73–78. doi:10.13334/j.0258-8013.pcsee.2010.11.007.
  • Wang, L., Y. P. Cheng, and H. Y. Liu. 2014. An analysis of fatal gas accidents in Chinese coal mines. Safety Science 62:107–13. doi:10.1016/j.ssci.2013.08.010.
  • Wang, F. H., M. G. Yu, X. P. Wen, H. X. Deng, and B. Pei. 2017. Suppression of methane/air explosion in pipeline by water mist. Journal of Loss Prevention in the Process Industries 49:791–96. doi:10.1016/j.jlp.2017.02.005.
  • Wei, C. R., M. Q. Xu, S. T. Wang, J. H. Sun, and H. Y. Fan. 2013. Experiment of porous materials for suppressing the gas explosion flame wave. Journal of China University of Mining & Technology 42 (2):206–13. doi:10.13247/j.cnki.jcumt.2013.02.008.
  • Wu, J., Z. Li, J. Cai, Y. Zhao, R. Zhou, and L. Pang. 2022. Experimental analysis of suppression effects of crosswise arranged porous iron-nickel materials on the natural gas explosion in utility tunnels. Journal of Loss Prevention in the Process Industries 77:104775. doi:10.1016/j.jlp.2022.104775.
  • Yan, A. H., B. S. Nie, L. C. Dai, Q. Zhang, X. N. Liu, H. Yang, Z. Liu, and T. Z. Hu. 2011. Numerical simulation on the gas explosion propagation related to roadway. Procedia Engineering 26:1563–70. doi:10.1016/j.proeng.2011.11.2339.
  • Yu, M. G., M. R. Liu, X. P. Wen, W. L. Zhao, and B. Pei. 2022. Experimental study on suppression of methane explosion by porous media and ultra-fine water mist. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 44 (1):1751–64. doi:10.1080/15567036.2019.1645763.
  • Zhang, J. F., X. M. Liang, Z. Y. Ma, Y. Y. Yang, J. J. Liang, H. Y. Zhu, T. W. Wang, and S. J. Wang. 2011. Study on chain scission of gas explosion reaction in foam ceramics. Procedia Engineering 26:2369–75. doi:10.1016/j.proeng.2011.11.2447.
  • Zhang, J. F., Z. Q. Sun, Y. M. Zheng, and Z. G. Su. 2012. Coupling effects of foam ceramics on the flame and shock wave of gas explosion. Safety Science 50 (4):797–800. doi:10.1016/j.ssci.2011.08.031.
  • Zhang, Q., X. M. Qian, Y. Y. Chen, and M. Q. Yuan. 2020. Deflagration shock wave dynamics of DME/LPG blended clean fuel under the coupling effect of initial pressure and equivalence ratio in elongated closed space. Journal of Cleaner Production 250:119572. doi:10.1016/j.jclepro.2019.119572.
  • Zhao, Q., H. M. Dai, X. F. Chen, C. Y. Huang, H. M. Zhang, Y. Li, S. He, B. H. Yuan, P. Yang, H. W. Zhu, et al. 2020. Characteristics of wheat dust flame with the influence of ceramic foam. Advanced Powder Technology 31 (8):3570–81. doi:10.1016/j.apt.2020.07.003.
  • Zhuang, C. J., Z. R. Wang, K. Zhang, Y. W. Lu, J. W. Shao, and Z. Dou. 2020. Explosion suppression of porous materials in a pipe-connected spherical vessel. Journal of Loss Prevention in the Process Industries 65:104106. doi:10.1016/j.jlp.2020.104106.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.