375
Views
60
CrossRef citations to date
0
Altmetric
Research Article

Optimum structure of a combined wind/photovoltaic/fuel cell-based on amended Dragon Fly optimization algorithm: a case study

, , , , , & ORCID Icon show all
Pages 7109-7131 | Received 03 Dec 2021, Accepted 18 Jul 2022, Published online: 03 Aug 2022

References

  • Acı, Ç. İ., and H. Gülcan. 2019. A modified dragonfly optimization algorithm for single-and multiobjective problems using Brownian motion. Computational Intelligence and Neuroscience 2019:1–17. doi:10.1155/2019/6871298.
  • Akikur, R. K., R. Saidur, H. W. Ping, K. R. Ullah. 2013. Comparative study of stand-alone and hybrid solar energy systems suitable for off-grid rural electrification: A review. Renewable and Sustainable Energy Reviews 27:738–52. doi:10.1016/j.rser.2013.06.043.
  • Anoune, K., M. Ghazi, M. Bouya, A. Laknizi, M. Ghazouani, A. B. Abdellah, A. Astito. 2020. Optimization and techno-economic analysis of photovoltaic-wind-battery based hybrid system. Journal of Energy Storage 32:101878. doi:10.1016/j.est.2020.101878.
  • Ashtiani, M. N., A. Toopshekan, F. Razi Astaraei, H. Yousefi, A. Maleki. 2020. Techno-economic analysis of a grid-connected PV/battery system using the teaching-learning-based optimization algorithm. Solar Energy 203:69–82. doi:10.1016/j.solener.2020.04.007.
  • Budak, Y., and Y. Devrim. 2019. Comparative study of PV/PEM fuel cell hybrid energy system based on methanol and water electrolysis. Energy Conversion and Management 179:46–57. doi:10.1016/j.enconman.2018.10.053.
  • Cao, Y., Y. Wu, L. Fu, K. Jermsittiparsert, N. Razmjooy. 2019. Multi-objective optimization of a PEMFC based CCHP system by meta-heuristics. Energy Reports 5:1551–59. doi:10.1016/j.egyr.2019.10.029.
  • Chen, L., H. Huang, P. Tang, D. Yao, H. Yang, N. Ghadimi. 2022. Optimal modeling of combined cooling, heating, and power systems using developed African Vulture Optimization: A case study in watersport complex. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 44 (2):4296–317. doi:10.1080/15567036.2022.2074174.
  • Das, B. K., R. Hassan, M. S. H. K. Tushar, F. Zaman, M. Hasan, P. Das. 2021. Techno-economic and environmental assessment of a hybrid renewable energy system using multi-objective genetic algorithm: A case study for remote Island in Bangladesh. Energy Conversion and Management 230:113823. doi:10.1016/j.enconman.2020.113823.
  • Dehghani, M., M. Ghiasi, T. Niknam, A. Kavousi-Fard, M. Shasadeghi, N. Ghadimi, F. Taghizadeh-Hesary. 2020. Blockchain-based securing of data exchange in a power transmission system considering congestion management and social welfare. Sustainability. 13 (1):1–1. doi:10.3390/su13010090.
  • Dhiman, G., and V. Kumar. 2017. Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications. Advances in Engineering Software 114:48–70. doi:10.1016/j.advengsoft.2017.05.014.
  • Dhiman, G., and V. Kumar. 2018. Emperor penguin optimizer: A bio-inspired algorithm for engineering problems. Knowledge-Based Systems 159:20–50. doi:10.1016/j.knosys.2018.06.001.
  • Esmaeilion, F. 2020. Hybrid renewable energy systems for desalination. Applied Water Science 10 (3):1–47. doi:10.1007/s13201-020-1168-5.
  • Fan, X., H. Sun, Z. Yuan, Z. Li, R. Shi, N. Ghadimi. 2020a. High voltage gain DC/DC converter using coupled inductor and VM techniques. IEEE Access 8:131975–87. doi:10.1109/ACCESS.2020.3002902.
  • Fan, X., H. Sun, Z. Yuan, Z. Li, R. Shi, N. Razmjooy. 2020b. Multi-objective optimization for the proper selection of the best heat pump technology in a fuel cell-heat pump micro-CHP system. Energy Reports 6:325–35. doi:10.1016/j.egyr.2020.01.009.
  • Fossil Fuels Still Supply 84 Percent Of World Energy — And Other Eye Openers From BP’s Annual Review. 2020. https://www.forbes.com/sites/rrapier/2020/06/20/bp-review-new-highs-in-global-energy-consumption-and-carbon-emissions-in-2019/.
  • Fuel cell CHP system inhouse5000+. 2021. https://www.inhouse-engineering.de/en/fuel-cell/pem-fuel-cell-stack-from-1-to-5-kw-electrical-power/.
  • Ghadimi, N. 2013. A method for placement of distributed generation (DG) units using particle swarm optimization. International Journal of Physical Sciences 8 (27):1417–23.
  • Gheydi, M., A. Nouri, N. Ghadimi. 2016. Planning in microgrids with conservation of voltage reduction. IEEE Systems Journal. 12 (3):2782–90. doi:10.1109/JSYST.2016.2633512.
  • Ghiasi, M., N. Ghadimi, and E. Ahmadinia. 2019. An analytical methodology for reliability assessment and failure analysis in distributed power system. SN Applied Sciences 1 (1):44. doi:10.1007/s42452-018-0049-0.
  • Gollou, A. R., and N. Ghadimi. 2017. A new feature selection and hybrid forecast engine for day-ahead price forecasting of electricity markets. Journal of Intelligent & Fuzzy Systems 32 (6):4031–45. doi:10.3233/JIFS-152073.
  • Guo, H., W. Gu, M. Khayatnezhad, N. Ghadimi. 2022. Parameter extraction of the SOFC mathematical model based on fractional order version of dragonfly algorithm. International Journal of Hydrogen Energy. 47 (57):24059–68. doi:10.1016/j.ijhydene.2022.05.190.
  • Hagh, M. T., H. Ebrahimian, N. Ghadimi. 2015. Hybrid intelligent water drop bundled wavelet neural network to solve the islanding detection by inverter-based DG. Frontiers in Energy. 9 (1):75–90. doi:10.1007/s11708-014-0337-3.
  • Hamian, M., A. Darvishan, M. Hosseinzadeh, M. J. Lariche, N. Ghadimi, A. Nouri. 2018. A framework to expedite joint energy-reserve payment cost minimization using a custom-designed method based on mixed integer genetic algorithm. Engineering Applications of Artificial Intelligence 72:203–12. doi:10.1016/j.engappai.2018.03.022.
  • Han, E., and N. Ghadimi. 2022. Model identification of proton-exchange membrane fuel cells based on a hybrid convolutional neural network and extreme learning machine optimized by improved honey badger algorithm. Sustainable Energy Technologies and Assessments 52:102005. doi:10.1016/j.seta.2022.102005.
  • Hinokuma, T., H. Farzaneh, and A. Shaqour. 2021. Techno-economic analysis of a fuzzy logic control based hybrid renewable energy system to power a university campus in Japan. Energies 14 (7):1960. doi:10.3390/en14071960.
  • Homer pro. 2021. https://www.homerenergy.com/
  • Khan, M. J., and L. Mathew. 2021. Artificial neural network-based maximum power point tracking controller for real-time hybrid renewable energy system. Soft Computing 25 (8):6557–75. doi:10.1007/s00500-021-05653-0.
  • Krishan, O., and S. Suhag. 2019. Techno-economic analysis of a hybrid renewable energy system for an energy poor rural community. Journal of Energy Storage 23:305–19. doi:10.1016/j.est.2019.04.002.
  • Liu, Y., W. Wang, N. Ghadimi. 2017. Electricity load forecasting by an improved forecast engine for building level consumers. Energy 139:18–30. doi:10.1016/j.energy.2017.07.150.
  • Liu, J., C. Chen, Z. Liu, K. Jermsittiparsert, N. Ghadimi. 2020. An IGDT-based risk-involved optimal bidding strategy for hydrogen storage-based intelligent parking lot of electric vehicles. Journal of Energy Storage 27:101057. doi:10.1016/j.est.2019.101057.
  • Mahdinia, S., M. Rezaie, M. Elveny, N. Ghadimi, N. Razmjooy. 2021. Optimization of PEMFC model parameters using meta-heuristics. Sustainability. 13 (22):12771. doi:10.3390/su132212771.
  • Malheiro, A., P. M. Castro, R. M. Lima, A. Estanqueiro. 2015. Integrated sizing and scheduling of wind/PV/diesel/battery isolated systems. Renewable Energy 83:646–57. doi:10.1016/j.renene.2015.04.066.
  • Mehrpooya, M., N. Ghadimi, M. Marefati, S. A. Ghorbanian. 2021. Numerical investigation of a new combined energy system includes parabolic dish solar collector, Stirling engine and thermoelectric device. International Journal of Energy Research. 45 (11):16436–55. doi:10.1002/er.6891.
  • Meng, Q., T. Liu, C. Su, H. Niu, Z. Hou, N. Ghadimi. 2020. A single-phase transformer-less grid-tied inverter based on switched capacitor for PV application. Journal of Control, Automation and Electrical Systems. 31 (1):257–70. doi:10.1007/s40313-019-00531-5.
  • Meraihi, Y., and Ramdane-Cherif, A., Acheli, D . 2020. Dragonfly algorithm: A comprehensive review and applications. Neural Computing and Applications 32: 16625–16646. https://doi.org/10.1007/s00521-020-04866-y
  • Mir, M., M. Shafieezadeh, M. A. Heidari, N. Ghadimi. 2020. Application of hybrid forecast engine based intelligent algorithm and feature selection for wind signal prediction. Evolving Systems. 11 (4):559–73. doi:10.1007/s12530-019-09271-y.
  • Mirjalili, S. 2016. Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Computing and Applications 27 (4):1053–73. doi:10.1007/s00521-015-1920-1.
  • Mirzapour, F., M. Lakzaei, G. Varamini, M. Teimourian, N. Ghadimi. 2019. A new prediction model of battery and wind-solar output in hybrid power system. Journal of Ambient Intelligence and Humanized Computing. 10 (1):77–87. doi:10.1007/s12652-017-0600-7.
  • Mohammed, O. H., et al. 2014. Optimal design of a PV/fuel cell hybrid power system for the city of Brest in France. 2014 First International Conference on Green Energy ICGE 2014, Sfax, Tunisia. IEEE.
  • Mubaarak, S., D. Zhang, Y. Chen, J. Liu, L. Wang, R. Yuan, J. Wu, Y. Zhang, M. Li. 2020. Techno-Economic analysis of grid-connected PV and fuel cell hybrid system using different PV tracking techniques. Applied Sciences. 10 (23):8515. doi:10.3390/app10238515.
  • Ragheb, M. 2014. Wind energy conversion theory, Betz equation. Wind Energie.
  • Razmjooy, N., M. Khalilpour, and M. Ramezani. 2016. A new meta-heuristic optimization algorithm inspired by FIFA world cup competitions: Theory and its application in PID designing for AVR system. Journal of Control, Automation and Electrical Systems 27 (4):419–40. doi:10.1007/s40313-016-0242-6.
  • Razmjooy, N., et al. 2019. A comprehensive survey of new meta-heuristic algorithms. Recent Advances in Hybrid Metaheuristics for Data Clustering, Wiley Publishing.
  • Razmjooy, N., et al. 2021. A new design for robust control of power system stabilizer based on moth search algorithm. Metaheuristics and Optimization in Computer and Electrical Engineering. Springer. 187–202. https://www.springerprofessional.de/en/a-new-design-for-robust-control-of-power-system-stabilizer-based/18590986
  • Rim, C., S. Piao, G. Li, U. Pak. 2018. A niching chaos optimization algorithm for multimodal optimization. Soft Computing. 22 (2):621–33. doi:10.1007/s00500-016-2360-2.
  • Ryse Energy. 2021. https://www.ryse.energy/20kw-wind-turbines/
  • Saeedi, M., M. Moradi, M. Hosseini, A. Emamifar, N. Ghadimi. 2019. Robust optimization based optimal chiller loading under cooling demand uncertainty. Applied Thermal Engineering 148:1081–91. doi:10.1016/j.applthermaleng.2018.11.122.
  • Samy, M., S. Barakat, and H. Ramadan. 2019. A flower pollination optimization algorithm for an off-grid PV-Fuel cell hybrid renewable system. International Journal of Hydrogen Energy 44 (4):2141–52. doi:10.1016/j.ijhydene.2018.05.127.
  • Samy, M., S. Barakat, and H. Ramadan. 2020. Techno-economic analysis for rustic electrification in Egypt using multi-source renewable energy based on PV/wind/FC. International Journal of Hydrogen Energy 45 (20):11471–83. doi:10.1016/j.ijhydene.2019.04.038.
  • Solar resource maps of Turkey. 2020. S.r.d. Solargis, Editor. Slovakia.
  • Türkay, B. E., and A. Y. Telli. 2011. Economic analysis of standalone and grid connected hybrid energy systems. Renewable Energy 36 (7):1931–43. doi:10.1016/j.renene.2010.12.007.
  • Ultra-light composite storage cylinder (E-Series). 2017. http://www.fuelcellstore.com/hydrogen-equipment/hydrogen-storage/compositestorage-cylinders/ultra-light-composite-storage-cylinder-eseries
  • UTL solar. 2021. https://www.upsinverter.com/utl/off-grid-solar-system/
  • Wu, Z., H. Tazvinga, and X. Xia. 2015. Demand side management of photovoltaic-battery hybrid system. Applied Energy 148:294–304. doi:10.1016/j.apenergy.2015.03.109.
  • Yang, D., G. Li, and G. Cheng. 2007. On the efficiency of chaos optimization algorithms for global optimization. Chaos, Solitons & Fractals 34 (4):1366–75. doi:10.1016/j.chaos.2006.04.057.
  • Yang, Z., M. Ghadamyari, H. Khorramdel, S. M. Seyed Alizadeh, S. Pirouzi, M. Milani, F. Banihashemi, N. Ghadimi. 2021. Robust multi-objective optimal design of islanded hybrid system with renewable and diesel sources/stationary and mobile energy storage systems. Renewable and Sustainable Energy Reviews 148:111295. doi:10.1016/j.rser.2021.111295.
  • Yazdani, M., and F. Jolai. 2016. Lion optimization algorithm (LOA): A nature-inspired metaheuristic algorithm. Journal of Computational Design and Engineering 3 (1):24–36. doi:10.1016/j.jcde.2015.06.003.
  • Ye, H., et al. 2020. High step-up interleaved dc/dc converter with high efficiency. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects in press: 1–20.
  • Yoo, J., B. Park, K. An, E. A. Al-Ammar, Y. Khan, K. Hur, J. H. Kim, et al. 2012. Look-ahead energy management of a grid-connected residential PV system with energy storage under time-based rate programs. Energies. 5 (4):1116–34. doi:10.3390/en5041116.
  • Yu, D., and N. Ghadimi. 2019. Reliability constraint stochastic UC by considering the correlation of random variables with Copula theory. IET Renewable Power Generation 13 (14):2587–93. doi:10.1049/iet-rpg.2019.0485.
  • Yu, D., Y. Wang, H. Liu, K. Jermsittiparsert, N. Razmjooy. 2019. System identification of PEM fuel cells using an improved Elman neural network and a new hybrid optimization algorithm. Energy Reports 5:1365–74. doi:10.1016/j.egyr.2019.09.039.
  • Yuan, Z., W. Wang, H. Wang, N. Ghadimi. 2020a. Probabilistic decomposition-based security constrained transmission expansion planning incorporating distributed series reactor. IET Generation, Transmission & Distribution. 14 (17):3478–87. doi:10.1049/iet-gtd.2019.1625.
  • Yuan, Z., W. Wang, H. Wang, N. Razmjooy. 2020b. A new technique for optimal estimation of the circuit-based PEMFCs using developed Sunflower Optimization Algorithm. Energy Reports 6:662–71. doi:10.1016/j.egyr.2020.03.010.
  • Zhang, J., M. Khayatnezhad, and N. Ghadimi. 2022. Optimal model evaluation of the proton-exchange membrane fuel cells based on deep learning and modified African Vulture Optimization Algorithm. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 44 (1):287–305. doi:10.1080/15567036.2022.2043956.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.