242
Views
0
CrossRef citations to date
0
Altmetric
Review

Mechanical systems for pavement energy harvesting: a state-of-the-art

, &
Pages 6957-6969 | Received 17 Dec 2021, Accepted 18 Jul 2022, Published online: 25 Jul 2022

References

  • Accessed September 2021. https://www.pordata.pt/Europa/Emiss%c3%b5es+de+gases+com+efeito+de+estufa+total+e+por+alguns+sectores+de+emiss%c3%b5es+de+gases-1481-812
  • Accessed September 2021. https://www.pordata.pt/Europa/Emiss%c3%b5es+de+gases+com+efeito+de+estufa+total+e+por+alguns+sectores+de+emiss%c3%b5es+de+gases-1481-814
  • Accessed September 2021. https://www.pordata.pt/Europa/Emiss%c3%b5es+de+gases+com+efeito+de+estufa+por+alguns+sectores+de+emiss%c3%b5es+de+gases+(percentagem)-1724-1524
  • Accessed September 2021. https://www.pordata.pt/Europa/Emiss%c3%b5es+de+gases+com+efeito+de+estufa+por+alguns+sectores+de+emiss%c3%b5es+de+gases+(percentagem)-1724-1526
  • Amid Tahami, S., M. Gholikhani, R. Nasouri, A. T. P. Samer Dessouky, and A. T. Papagiannakis. 2019. Developing a new thermoelectric approach for energy harvesting from asphalt pavements. Applied Energy 238:786–95. doi:10.1016/j.apenergy.2019.01.152.
  • Azam, A., A. Ahmed, N. Hayat, S. Ali, A. Shakoor Kan, G. Murtaza, and T. Aslam. 2020. Design, fabrication, modelling and analyses of a movable speedbump based mechanical energy harvester (MEH) for application on road. Journal of Energy. doi:10.1016/j.energy.2020.118894.
  • Cao, Y., A. Sha, Z. Liu, B. Luan, L. Jiarong, and W. Jiang. 2020. Electric energy output model of a piezoelectric transducer for pavement application under vehicle load excitation. Energy 211:118595. doi:10.1016/j.energy.2020.118595.
  • Cao, Y., A. Sha, Z. Liu, L. Jiarong, and W. Jiang. 2021. Energy output of piezoelectric transducers and pavements undersimulated traffic load. Journal of Cleaner Production 279:123508. doi:10.1016/j.jclepro.2020.123508.
  • Chang, H.-W., and C.-Y. Lee. 2011. On-road energy conversion and vibration energy absorber apparatus. US Patent US20110215593A1
  • Chen, C., A. Sharafi, and J.-Q. Sun. 2020. A high density piezoelectric energy harvesting device from highway traffic – Design analysis and laboratory validation. Applied Energy 269. doi:10.1016/j.apenergy.2020.115073.
  • Correia, D., and A. Ferreira. 2021. Energy harvesting on airport pavements: state-of-the-art. Sustainability 13 (5893):5893. doi:10.3390/su13115893.
  • Danz, R. 2018. Multifunctional modules for generating electrical energy on traffic routes for electromobility. DE Patent DE202018001843U1
  • Davis. 2016. Roadway power generating system. European Patent EP1917437B1
  • Douglas Kenney, T. 2009. System and method for electrical power generation utilizing vehicle traffic and roadways. US Patent US7530761
  • Duarte, F., A. Ferreira, and D. Correia. 2013. Waynergy People: A new pavement energy harvest system. ICE Municipal Engineer 166(4): 250–256. doi:10.1680/muen.12.00049.
  • Duarte, F., and A. Ferreira. 2015. Energy harvesting on road pavements: State of the art Proceedings of the Institution of Civil Engineers (Energy) 169(2): 79–90. doi:10.1680/jener.15.00005.
  • Duarte, F., and A. Ferreira. 2015b. Sistema de Geração de Energia Elétrica nos Pavimentos Rodoviários. Coimbra (Portugal): CITTA, Department of Civil Engineering, University of Coimbra.
  • Duarte, F. 2017. Pavement energy harvesting system to convert vehicles kinetic energy into electricity. PhD Thesis in Doctoral Program in Transport Systems, Faculty of Sciences and Technology, University of Coimbra
  • Duarte, F., A. Ferreira, and P. Fael. 2017. Integration of a mechanical energy storage system in a road pavement energy harvesting hydraulic device with mechanical actuation. Journal of Renewable and Sustainable Energy 9. doi:10.1063/1.4999513.
  • Edward Houghton, L. 2011. Hydraulic or pneumatic road vehicle energy harvesting mat. UK Patent GB2476826
  • Gholikhani, M., S. Amid Tahami, and S. Dessouky. 2019. Harvesting energy from pavement. Electromagnetic Approach 271. MATEC Web of Conferences. doi:10.1051/matecconf/201927106001.
  • Groen, P. 2012. An introduction to piezoelectric materials and components. Delft, Netherlands: Stichting Applied Piezo.
  • Guo, L., and L. Qing. 2017a. Modeling a new energy harvesting pavement system with experimental verification. Applied Energy 208:1071–82. doi:10.1016/j.apenergy.2017.09.045.
  • Guo, L., and L. Qing. 2017b. Potentials of piezoelectric and thermoelectric technologies for harvesting energy from pavements. Renewable and Sustainable Energy Reviews 72:761–73. doi:10.1016/j.rser.2017.01.090.
  • Guo, L. 2018. Development of a New Piezoelectric-based Energy Harvesting Pavement System. Graduate Thesis and Dissertations, University of South Florida
  • Hadas, Z., V. Vetiska, V. Singule, O. Andrs, J. Kovar, and J. Vetiska. 2012. Energy harvesting from mechanical shocks using a sensitive vibration energy harvester. International Journal of Advanced Robotic Systems 9 (225):225. doi:10.5772/53948.
  • Hadi Obeid, H., A. Kareem Jaleel, and N. Aubays Hassan. 2014. Design and motion modeling of an electromagnetic hydraulic power hump harvester. Advances in Mechanical Engineering, Hindawi Publishing Corporation. doi:10.1155/2014/150293.
  • Horianopoulos, D., and S Horianopoulos. 2017. Traffic-actuated electrical generator apparatus. European Patent EP1945948B1
  • Idala Egbe, K.-J., A. Matin Nazar, P. Jiao, Y. Chang, Y. Xinghong, and H. Wang. 2021. Vibrational turbine piezoelectric nanogenerators for energy harvesting in multiphase flow fields. Energy Reports 7:6384–93. doi:10.1016/j.egyr.2021.09.085.
  • Jang, Shihzong. 2016. Electrical generator apparatus, particularly for use on a vehicle roadway. US Patent US9287753B2
  • John, C. M. 1995. Technology readiness levels. NASA: Office of Space Access and Technology.
  • Kaajakari, V., and D. Han. 2009. Microstructured polymer for shoe power generation. Tranducers, International Solid-State Sensors, Actuators and Microsystems Conference, pp. 1393–96, Denver, CO.
  • Kim, S., J. Shen, M. Ahad, Z. Tucker, and I. Stern. 2016. Piezoelectric energy harvesting system assessment for highway sustainability, 52nd ASC Annual International Conference Proceedings, United States.
  • Kokkinopoulos, A., G. Vokas, and P. Papageorgas. 2014. Energy harvesting implementing embedded piezoelectric generators the potential for the Attiki Odos traffic grid. The International Conference on Technologies and Materials for Renewable Energy, Environment and Sustainability, Beirut (Lebanon). Energy Procedia. Vol. 50. pp.1070–85. doi: 10.1016/j.egypro.2014.06.126.
  • Liu, M., R. Lin, S. Zhou, Y. Yilun, A. Ishida, M. McGrath, B. Kennedy, M. Hajj, and L. Zuo. 2018. Design, simulation and experiment of a novel high efficiency energy harvesting paver. Applied Energy 212:966–75. doi:10.1016/j.apenergy.2017.12.123.
  • Magalhães, A. B., A. D. Santos, and J. F. Cunha. 2015. Introdução à Engenharia Mecânica - Sua relevância na sociedade e na vida contemporânea. Porto: Publindústria.
  • Martinez, S. 1980. Highway Turbine. US Patent US4238687
  • Mitcheson, P. D., T. C. Green, E. M. Yeatman, and A. S. Holmes. 2004. Architectures for vibration-driven micropower generators. Journal of Microelectromechanical Systems 13 (3):429–40. doi:10.1109/JMEMS.2004.830151.
  • Papagiannakis, A. T., S. Dessouky, A. Montoya, and H. Roshani. 2016. Energy harvesting from roadways. The 6th International Conference on Sustainable Energy Information Technology, Madrid (Spain). Procedia Computer Science. Vol. 83. pp. 758–65. doi: 10.1016/j.procs.2016.04.164.
  • Parekh, P., H. Barot, V. Terdal, and P. Shashanoj. 2017. Shoe power generator using piezoelectricity. International Journal of Industrial Electronics and Electrical Engineering 5 (12):93–95.
  • Shukla, A., and S. A. Ansari. 2018. Energy harvesting from road pavement: a cleaner and greener alternative. International Research Journal of Engineering and Technology (IRJET) 5 (2):1612–1616.
  • Sintusiri, J., V. Harnchana, V. Amornkitbamrung, A. Wongsa, and C. Prinya. 2020. Portland Cement-TiO2 triboelectric nanogenerator for robust large-scale mechanical energy harvesting and instantaneous motion sensor applications. Nano Energy 74:104802. doi:10.1016/j.nanoen.2020.104802.
  • Smith, Roland. 1979. Road vehicle-actuated air compressor and system therefor. US Patent US4173431
  • Taghinezhad, J., R. Alimardani, M. Masdari, and E. Mahmoodi. 2021. Performance optimization of a dual-rotor ducted wind turbine by using response surface method. Journal of Energy Conversion and Management: X 12. doi:10.1016/j.ecmx.2021.100120.
  • Ting, C.-C., D.-Y. Tsai, and C.-C. Hsiao. 2011. Developing a mechanical roadway system for waste energy capture of vehicles and electric generation. Applied Energy 92:1–8. doi:10.1016/j.apenergy.2011.10.006.
  • Trivedi, C., I. Iliev, O. Gunnar Dahlhaug, Z. Markov, F. Engstrom, and H. Lysaker. 2020. Investigation of a Francis turbine during speed variation: Inception of cavitation. Renewable Energy 166:147–62. doi:10.1016/j.renene.2020.11.108.
  • Vanelli Tagliacani, C. 2018. Apparatus for generating electric power from vehicles moving on a road. US Patent US10056804B2
  • Wang, C., Y. Gongxin, H. Cao, S. Wang, and L. Yanwei. 2020a. Structure simulation optimization and test verification of piezoelectric energy harvester device for road. Sensors and Actuators. A, Physical 315. doi:10.1016/j.sna.2020.112322.
  • Wang, S., C. Wang, Y. Gongxin, and Z. Gao. 2020b. Development and performance of a piezoelectric energy conversion structure applied in pavement. Energy Conversion and Management 207:112571. doi:10.1016/j.enconman.2020.112571.
  • Wang, Z., Y. Du, L. Tianrun, Z. Yan, and T. Ting. 2021. A flute-inspired broadband piezoelectric vibration energy harvesting devicewith mechanical intelligent design. Applied Energy 303:117577. doi:10.1016/j.apenergy.2021.117577.
  • Xiang, H. J., J. J. Wang, Z. F. Shi, and Z. W. Zhang. 2013. Theoretical analysis of piezoelectric energy harvesting from traffic induced deformation of pavements. Smart Materials and Structures 22 (9):095024. doi:10.1088/0964-1726/22/9/095024.
  • Xiaochen, X., D. Cao, H. Yang, and H. Ming. 2018. Application of piezoelectric transducer in energy harvesting in pavement. International Journal of Pavement Research and Technology 11:388–95. doi:10.1016/j.ijprt.2017.09.011.
  • Xuejuan, Z., X. Hongjun, and S. Zhifei. 2020. Piezoelectric energy harvesting from vehicles induced bending deformation in pavements considering the arrangement of harvesters. Applied Mathematical Modelling 77:327–40. doi:10.1016/j.apm.2019.07.048.
  • Yang, H., Wang L, Zhou B, Wei Y, Zhao Q. 2017. A preliminary study on the highway piezoelectric power supply system. International Journal of Pavement Res. Technol 11(2):168–75. doi:10.1016/j.ijprt.2017.08.006.
  • Zhang, Z., X. Zhang, Y. Rasim, C. Wang, D. Bing, and Y. Yuan. 2016. Design, modelling and practical tests on a high-voltage kinetic energy harvesting (EH) system for a renewable road tunnel based on linear alternators. Applied Energy 164:152–61. doi:10.1016/j.apenergy.2015.11.096.
  • Zhang, H., K. Huang, Z. Zhang, T. Xiang, and L. Quan. 2019. Piezoelectric energy harvesting from roadways based on pavement compatible package. Journal of Applied Mechanics 86 (9). doi: 10.1115/1.4044140.
  • Zhang, H., C. Yang, Y. Ying, Y. Zhou, L. Quan, S. Dong, and J. Luo. 2020. Origami-tessellation-based triboelectric nanogenerator for energy harvesting with application in road pavement. Nano Energy 78. doi:10.1016/j.nanoen.2020.105177.
  • Zhao, H., Y. Jian, and J. Ling. 2010. Finite element analysis of Cymbal piezoelectric transducers for harvesting energy from asphalt pavement. Journal of the Ceramic Society of Japan 10 (118):909–15. doi:10.2109/jcersj2.118.909.
  • Zhao, H., L. Qin, and J. Ling. 2015. Test and analysis of bridge transducers for harvesting energy from asphalt pavement. International Journal of Transportation and Technology 4 (1):17–28. doi:10.1260/2046-0430.4.1.17.
  • Zhao, X., H. Xiang, and Z. Shi. 2020. Piezoelectric energy harvesting from vehicles induced bending deformation in pavements considering the arrangement of harvesters. Applied Mathematical Modelling 77:327–40. doi:10.1016/j.apm.2019.07.048.
  • Zhou, R., M. Yan, F. Sun, J. Jin, L. Qiang, X. Fangchao, M. Zhang, X. Zhang, and K. Nakano. 2021. Experimental validations of a magnetic energy-harvesting suspension and its potential application for self-powered sensing. Energy 239. doi:10.1016/j.energy.2021.122205.
  • Zhu, X., Y. Yue, and L. Feng. 2019. A review on thermoelectric energy harvesting from asphalt pavement: Configuration, performance and future. Construction and Building Materials 228:116818. doi:10.1016/j.conbuildmat.2019.116818.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.