120
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Experimental investigation on load mitigation of a 5 MW wind turbine in digital fluid power pitch system test rig based on predictive load mitigation controller

ORCID Icon & ORCID Icon
Pages 7194-7216 | Received 23 May 2022, Accepted 22 Jul 2022, Published online: 03 Aug 2022

References

  • Abdelbaky, M. A., X. Liu, and D. Jiang. 2020. Design and implementation of partial offline fuzzy model-predictive pitch controller for large-scale wind-turbines. Renewable Energy 145 (January):981–96. doi:10.1016/j.renene.2019.05.074.
  • Ali, H. H., and R. C. Fales. 2021 December. A review of flow control methods. The International Journal of Dynamics and Control 9(4):1847–54. doi:10.1007/s40435-020-00730-y.
  • Asgharnia, A., A. Jamali, R. Shahnazi, and A. Maheri. 2020. Load mitigation of a class of 5-MW wind turbine with RBF neural network based fractional-order PID controller. ISA transactions 96 (January):272–86. doi:10.1016/j.isatra.2019.07.006.
  • Beiter, P., A. Cooperman, E. Lantz, T. Stehly, M. Shields, R. Wiser, T. Telsnig, L. Kitzing, V. Berkhout, Y. Kikuchi, et al. September 2021. Wind power costs driven by innovation and experience with further reductions on the horizon. WIREs Energy Environ 10. doi:10.1002/wene.398.
  • Ha, K., H. V. A. Truong, T. D. Dang, and K. K. Ahn. 2021 January. Recent control technologies for floating offshore wind energy system: A review. International Journal of Precision Engineering and Manufacturing 8(1):281–301. doi:10.1007/s40684-020-00269-5.
  • Han, B., L. Zhou, F. Yang, and Z. Xiang. 2016 May. Individual pitch controller based on fuzzy logic control for wind turbine load mitigation. IET Renewable Power Generation 10(5):687–93. doi:10.1049/iet-rpg.2015.0320.
  • Hu, Y., M. Z. Q. Chen, and C. Li. 2017 July. Active structural control for load mitigation of wind turbines via adaptive sliding-mode approach. Journal of the Franklin Institute 354(11):4311–30. doi:10.1016/j.jfranklin.2017.04.002.
  • Huova, M., A. Aalto, M. Linjama, K. Huhtala, T. Lantela, and M. Pietola. 2017 September. Digital hydraulic multi-pressure actuator – The concept, simulation study and first experimental results. International Journal of Fluid Power 18(3):141–52. doi:10.1080/14399776.2017.1302775.
  • Jonkman, J., S. Butterfield, W. Musial, and G. Scott. February 2009. Definition of a 5-MW reference wind turbine for offshore system development. United States: Golden, CO. doi:10.2172/947422.
  • Lee, F., and J. Zhao, “GWEC global wind report 2019,” 2020.
  • Li, J., and S. Wang. 2021. Dual multivariable model-free adaptive individual pitch control for load reduction in wind turbines with actuator faults. Renewable Energy 174 (August):293–304. doi:10.1016/j.renene.2021.04.080.
  • Marugán, A. P., F. P. G. Márquez, J. M. P. Perez, and D. Ruiz-Hernández. 2018. A survey of artificial neural network in wind energy systems. Applied Energy 228 (October):1822–36. doi:10.1016/j.apenergy.2018.07.084.
  • Narayanan, V. L., and R. Ramakrishnan. 2021a January. Design and implementation of an intelligent digital pitch controller for digital hydraulic pitch system hardware-in-the-loop simulator of wind turbine. International Journal of Green Energy 18(1):17–36. doi:10.1080/15435075.2020.1814300.
  • Narayanan, V. L., and R. Ramakrishnan. 2021b. “Pitch Control of a Digital Hydraulics Pitch System for Wind Turbine Based on Neuro-Fuzzy Digital Pitch Controller,” Int. J. Renew. Energy Res. No. ijrer.v11i1. doi:10.20508/ijrer.v11i1.11626.g8153.
  • Narayanan, V. L., R. Ramakrishnan, and R. Rengaswamy. 2022 June. Real-Time testing of novel robust digital pitch controller for digital hydraulic pitch system in wind turbine. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 44(2):3477–96. doi:10.1080/15567036.2022.2064944.
  • Pedersen, N. H., P. Johansen, and T. O. Andersen. 2016 October. LQR Feedback Control Development for Wind Turbines Featuring a Digital Fluid Power Transmission System. In Fluid Power Systems Technology, Vol. 50473, V001T01A024. Florianópolis, SC, Brazil:American Society of Mechanical Engineers. doi: 10.1115/FPNI2016-1537.
  • Pedersen, N. H., P. Johansen, and T. O. Andersen. 2018 January. Optimal control of a wind turbine with digital fluid power transmission. Nonlinear Dynamics 91(1):591–607. doi:10.1007/s11071-017-3896-0.
  • Qiankun, M., W. Xuyong, Y. Fan, T. Jianfeng, and L. Peng, “Research on feed-forward PIDD 2 control for hydraulic continuous rotation motor electro-hydraulic servo system with long pipeline,” in 2016 UKACC 11th International Conference on Control (CONTROL), Belfast, UK, August 2016, pp. 1–6, doi: 10.1109/CONTROL.2016.7737533.
  • Sitharthan, R., and M. Geethanjali. 2017 March. An adaptive Elman neural network with C-PSO learning algorithm based pitch angle controller for DFIG based WECS. The Journal of Vibration and Control 23(5):716–30. doi:10.1177/1077546315585038.
  • Tang, S., D. Tian, X. Wu, M. Huang, and Y. Deng. 2022. Wind turbine load reduction based on 2DoF robust individual pitch control. Renewable Energy 183 (January):28–40. doi:10.1016/j.renene.2021.10.086.
  • Venkaiah, P., and B. K. Sarkar. 2020. Hydraulically actuated horizontal axis wind turbine pitch control by model free adaptive controller. Renewable Energy 147 (March):55–68. doi:10.1016/j.renene.2019.08.127.
  • Venkaiah, P., and B. K. Sarkar. 2022 February. Electrohydraulic proportional valve-controlled vane type semi-rotary actuated wind turbine control by feedforward fractional-order feedback controller. Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering 236(2):318–37. doi:10.1177/09596518211028417.
  • Wang, C. S., and M. H. Chiang. 2016 September. A novel pitch control system of a large wind turbine using two-degree-of-freedom motion control with feedback linearization control. Energies 9(10):791. doi:10.3390/en9100791.
  • Yin, X., Y. Lin, W. Li, Y. Gu, X. Wang, and P. Lei. 2015. Design, modeling and implementation of a novel pitch angle control system for wind turbine. Renewable Energy 81 (September):599–608. doi:10.1016/j.renene.2015.03.042.
  • Yin, X., W. Zhang, Z. Jiang, and L. Pan. 2019. Adaptive robust integral sliding mode pitch angle control of an electro-hydraulic servo pitch system for wind turbine. Mechanical Systems and Signal Processing 133 (November):105704. doi:10.1016/j.ymssp.2018.09.026.
  • Yuan, Y., and J. Tang. 2017a. Adaptive pitch control of wind turbine for load mitigation under structural uncertainties. Renewable Energy 105 (May):483–94. doi:10.1016/j.renene.2016.12.068.
  • Yuan, Y., and J. Tang. 2017b August. On advanced control methods toward power capture and load mitigation in wind turbines. Engineering 3(4):494–503. doi:10.1016/J.ENG.2017.04.023.
  • Yuan, Y., X. Chen, and J. Tang. 2020. Multivariable robust blade pitch control design to reject periodic loads on wind turbines. Renewable Energy 146 (February):329–41. doi:10.1016/j.renene.2019.06.136.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.