153
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Comprehensive analysis of a novel cooling/electricity cogeneration system driven by waste heat of a marine diesel engine

, , &
Pages 7331-7346 | Received 22 Nov 2021, Accepted 05 Jul 2022, Published online: 05 Aug 2022

References

  • Bahadori, A. 2011. Estimation of combustion flue gas acid dew point during heat recovery and efficiency gain. Applied Thermal Engineering 31 (8–9):1457–62. doi:10.1016/j.applthermaleng.2011.01.020.
  • Bejan, A., and G. Tsatsaronis. 1996. Thermal design and optimization. New York: John Wiley & Sons.
  • Bejan, A., G. Tsatsaronis, and M. Moran. 1996. Thermal design and optimization. New York:John Wiley and Sons.
  • Cai, T., M. Dong, H. Liu, and S. Nojavan. 2022. Integration of hydrogen storage system and wind generation in power systems under demand response program: A novel p-robust stochastic programming. International Journal of Hydrogen Energy 47 (1):443–58. doi:10.1016/j.ijhydene.2021.10.027.
  • Fan, S., Y. Wang, S. Cao, T. Sun, and P. Liu. 2021. A novel method for analyzing the effect of dust accumulation on energy efficiency loss in photovoltaic (PV) system. Energy 234:121112. doi:10.1016/j.energy.2021.121112.
  • Feili, M., H. Rostamzadeh, and H. Ghaebi. 2020. A new high-efficient cooling/power cogeneration system based on a double-flash geothermal power plant and a novel zeotropic bi-evaporator ejector refrigeration cycle. Renewable Energy 162:2126–52. doi:10.1016/j.renene.2020.10.011.
  • Feili, M., H. Ghaebi, T. Parikhani, and H. Rostamzadeh. 2020a. Exergoeconomic analysis and optimization of a new combined power and freshwater system driven by waste heat of a marine diesel engine. Thermal Science and Engineering Progress 18:100513. doi:10.1016/j.tsep.2020.100513.
  • Feili, M., H. Rostamzadeh, T. Parikhani, and H. Ghaebi. 2020b. Hydrogen extraction from a new integrated trigeneration system working with zeotropic mixture, using waste heat of a marine diesel engine. International Journal of Hydrogen Energy 45 (41):21969–94. doi:10.1016/j.ijhydene.2020.05.208.
  • Feili, M., H. Rostamzadeh, and H. Ghaebi. 2022. Thermo-mechanical energy level approach integrated with exergoeconomic optimization for realistic cost evaluation of a novel micro-CCHP system. Renewable Energy 190:630–57. doi:10.1016/j.renene.2022.03.064.
  • Garcia-Hernando, N., M. De Vega, A. Soria-Verdugo, and S. Sanchez-Delgado. 2013. Energy and exergy analysis of an absorption power cycle. Applied Thermal Engineering 55 (1–2):69–77. doi:10.1016/j.applthermaleng.2013.02.044.
  • Guo, Z., J. Yang, Z. Tan, X. Tian, and Q. Wang. 2021. Numerical study on gravity-driven granular flow around tube out-wall: Effect of tube inclination on the heat transfer. International Journal of Heat and Mass Transfer 174:121296. doi:10.1016/j.ijheatmasstransfer.2021.121296.
  • Hasanzadeh, A., A. Chitsaz, P. Mojaver, and A. Ghasemi. 2021. Stand-alone gas turbine and hybrid MCFC and SOFC-gas turbine systems: Comparative life cycle cost, environmental, and energy assessments. Energy Reports 7:4659–80. doi:10.1016/j.egyr.2021.07.050.
  • Heo, J. Y., M. S. Kim, S. Baik, S. J. Bae, and J. I. Lee. 2017. Thermodynamic study of supercritical CO2 Brayton cycle using an isothermal compressor. Applied Energy 206:1118–30. doi:10.1016/j.apenergy.2017.08.081.
  • Hoang, A. T. 2018. Waste heat recovery from diesel engines based on organic rankine cycle. Applied Energy 231:138–66. doi:10.1016/j.apenergy.2018.09.022.
  • Hoang, A. T., X. P. Nguyen, A. T. Le, M. T. Pham, T. H. Hoang, A. R. M. S. Al-Tawaha, S. Yondri, et al. 2021. Power generation characteristics of a thermoelectric modules-based power generator assisted by fishbone-shaped fins: Part II–Effects of cooling water parameters. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 43(3):381–93. doi:10.1080/15567036.2019.1624891.
  • Holdmann, G., and C. H. S. Resort, “Geothermal powered absorption chiller,” in Rural Energy Conference, Valdez, Alaska, 2005.
  • Klein, S., and F. Alvarado, “Engineering equation solver, version 9.083,” F-chart software, Middleton, WI, 2012.
  • Larsen, U., L. Pierobon, F. Haglind, and C. Gabrielii. 2013. Design and optimisation of organic Rankine cycles for waste heat recovery in marine applications using the principles of natural selection. Energy 55:803–12. doi:10.1016/j.energy.2013.03.021.
  • Li, J., F. Wang, and Y. He. 2020. Electric vehicle routing problem with battery swapping considering energy consumption and carbon emissions. Sustainability 12 (24):10537. doi:10.3390/su122410537.
  • Li, Z., Y. Liu, P. Yin, Y. Peng, J. Luo, S. Xie, H. Pu, et al. 2021. Constituting abrupt magnetic flux density change for power density improvement in electromagnetic energy harvesting. International Journal of Mechanical Sciences 198:106363. doi:10.1016/j.ijmecsci.2021.106363.
  • Liu, L., X. Meng, Z. Miao, and S. Zhou. 2022. Design of a novel thermoelectric module based on application stability and power generation. Case Studies in Thermal Engineering 31:101836. doi:10.1016/j.csite.2022.101836.
  • Mest, S., O. Loewlein, D. Balthasar, and H. Schmuttermair, “TCS-PTG-MAN diesel & turbo s power turbine portfolio for waste heat recovery,” in Proceedings of the Congress of the International Council on Combustion Engines (CIMAC), Shanghai, China, 2013.
  • Nguyen, H. P., A. T. Hoang, S. Nizetic, X. P. Nguyen, A. T. Le, C. N. Luong, V. D. Chu, V. V. Pham, et al. 2021. The electric propulsion system as a green solution for management strategy of CO2 emission in ocean shipping: A comprehensive review. International Transactions on Electrical Energy Systems. 31(11):e12580. doi:10.1002/2050-7038.12580.
  • Orr, B., A. Akbarzadeh, M. Mochizuki, and R. Singh. 2016. A review of car waste heat recovery systems utilising thermoelectric generators and heat pipes. Applied Thermal Engineering 101:490–95. doi:10.1016/j.applthermaleng.2015.10.081.
  • Ouyang, T., Z. Wang, Z. Zhao, J. Lu, and M. Zhang. 2021. An advanced marine engine waste heat utilization scheme: Electricity-cooling cogeneration system integrated with heat storage device. Energy Conversion and Management 235:113955. doi:10.1016/j.enconman.2021.113955.
  • Parikhani, T., H. Ghaebi, and H. Rostamzadeh. 2018. A novel geothermal combined cooling and power cycle based on the absorption power cycle: Energy, exergy and exergoeconomic analysis. Energy 153:265–77. doi:10.1016/j.energy.2018.01.153.
  • Peng, Y., Z. Xu, M. Wang, Z. Li, J. Peng, J. Luo, S. Xie, H. Pu, Z. Yang, et al. 2021. Investigation of frequency-up conversion effect on the performance improvement of stack-based piezoelectric generators. Renewable Energy 172:551–63. doi:10.1016/j.renene.2021.03.064.
  • Qiao, W., W. Liu, and E. Liu. 2021. A combination model based on wavelet transform for predicting the difference between monthly natural gas production and consumption of US. Energy 235:121216. doi:10.1016/j.energy.2021.121216.
  • Qiao, W., Y. Wang, J. Zhang, W. Tian, Y. Tian, and Q. Yang. 2021. An innovative coupled model in view of wavelet transform for predicting short-term PM10 concentration. Journal of Environmental Management 289:112438. doi:10.1016/j.jenvman.2021.112438.
  • Qiao, W., Z. Li, W. Liu, and E. Liu. 2022. Fastest‐growing source prediction of US electricity production based on a novel hybrid model using wavelet transform. International Journal of Energy Research 46 (2):1766–88. doi:10.1002/er.7293.
  • Sadeghi, M., S. Mahmoudi, and R. K. Saray. 2015. Exergoeconomic analysis and multi-objective optimization of an ejector refrigeration cycle powered by an internal combustion (HCCI) engine. Energy Conversion and Management 96:403–17. doi:10.1016/j.enconman.2015.02.081.
  • Shang, L., X. Dong, C. Liu, and W. He, “Modelling and analysis of electromagnetic time scale voltage variation affected by power electronic interfaced voltage regulatory devices,” IEEE Transactions on Power Systems, United States, 2021.
  • Shokati, N., F. Ranjbar, and M. Yari. 2014. A comparative analysis of rankine and absorption power cycles from exergoeconomic viewpoint. Energy Conversion and Management 88:657–68. doi:10.1016/j.enconman.2014.09.015.
  • Śmierciew, K., J. Gagan, D. Butrymowicz, and J. Karwacki. 2014. Experimental investigations of solar driven ejector air-conditioning system. Energy and Buildings 80:260–67. doi:10.1016/j.enbuild.2014.05.033.
  • Syah, R., A. Davarpanah, M. Elveny, A. Ghasemi, and D. Ramdan. 2021. The economic evaluation of methanol and propylene production from natural gas at petrochemical industries in Iran. Sustainability 13 (17):9990. doi:10.3390/su13179990.
  • Teng, H., G. Regner, and C. Cowland, “Waste heat recovery of heavy-duty diesel engines by organic Rankine cycle Part II: Working fluids for WHR-ORC,” SAE Technical Paper 0148–7191, 2007.
  • Teng, H., and G. Regner, “Improving fuel economy for HD diesel engines with WHR Rankine cycle driven by EGR cooler heat rejection,” SAE Technical Paper 0148–7191, 2009.
  • Wang, S., and R. Wang. 2005. Recent developments of refrigeration technology in fishing vessels. Renewable Energy 30 (4):589–600. doi:10.1016/j.renene.2004.03.020.
  • Wang, T., Y. Zhang, Z. Peng, and G. Shu. 2011. A review of researches on thermal exhaust heat recovery with Rankine cycle. Renewable and Sustainable Energy Reviews 15 (6):2862–71. doi:10.1016/j.rser.2011.03.015.
  • Wang, M.-R., L. Deng, G.-C. Liu, L. Wen, J.-G. Wang, K.-B. Huang, H.-T. Tang, Y.-M. Pan, et al. 2019. Porous organic polymer-derived nanopalladium catalysts for chemoselective synthesis of antitumor Benzofuro[2,3-b]pyrazine from 2-bromophenol and isonitriles. Organic Letters. 21(13):4929–32. doi:10.1021/acs.orglett.9b01230.
  • Xia, J., J. Wang, J. Lou, P. Zhao, and Y. Dai. 2016. Thermo-economic analysis and optimization of a combined cooling and power (CCP) system for engine waste heat recovery. Energy Conversion and Management 128:303–16. doi:10.1016/j.enconman.2016.09.086.
  • Xu, C., and H. Xu. 2020. Self-tuning method of electronic governor parameters for marine medium-speed diesel engine. Journal of Coastal Research 103 (sp1):378–81. doi:10.2112/SI103-077.1.
  • Yan, J. 2015. Handbook of Clean Energy Systems. New York: John Wiley & Sons. Volume 6 Set vol. 1.
  • Yu, G., G. Shu, H. Tian, Y. Huo, and W. Zhu. 2016. Experimental investigations on a cascaded steam-/organic-Rankine-cycle (RC/ORC) system for waste heat recovery (WHR) from diesel engine. Energy Conversion and Management 129:43–51. doi:10.1016/j.enconman.2016.10.010.
  • Zhang, L., H. Zheng, G. Cai, Z. Zhang, X. Wang, and L. H. Koh. 2022a. Power‐frequency oscillation suppression algorithm for AC microgrid with multiple virtual synchronous generators based on fuzzy inference system. IET Renewable Power Generation 16 (8):1589–601. doi:10.1049/rpg2.12461.
  • Zhang, Y., X. Shi, H. Zhang, Y. Cao, and V. Terzija. 2022b. Review on deep learning applications in frequency analysis and control of modern power system. International Journal of Electrical Power & Energy Systems 136:107744. doi:10.1016/j.ijepes.2021.107744.
  • Zhu, D., B. Wang, H. Ma, and H. Wang. 2019. Evaluating the vulnerability of integrated electricity-heat-gas systems based on the high-dimensional random matrix theory. CSEE Journal of Power and Energy Systems 6:878–89.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.