219
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of the impact of the temperature and mass flow rate of the water, utilized in the R516A refrigeration system with dual evaporator and ejector, on the performance parameters

ORCID Icon, , , &
Pages 7316-7329 | Received 15 Jun 2022, Accepted 25 Jul 2022, Published online: 03 Aug 2022

References

  • Alkhulaifi, Y. M., N. A. A. Qasem, and S. M. Zubair. 2022. Exergoeconomic assessment of the ejector-based battery thermal management system for electric and hybrid-electric vehicles. Energy 245:123252. doi:10.1016/j.energy.2022.123252.
  • Besagni, G., N. Cristiani, L. Croci, G. R. Guédon, and F. Inzoli. 2021. Multi-scale evaluation of ejector performances: The influence of refrigerants and ejector design. Applied Thermal Engineering 186:116502. doi:10.1016/j.applthermaleng.2020.116502.
  • Bilir Sag, N., H. K. Ersoy, A. Hepbasli, and H. S. Halkaci. 2015. Energetic and exergetic comparison of basic and ejector expander refrigeration systems operating under the same external conditions and cooling capacities. Energy Conversion and Management 90:184–94. doi:10.1016/j.enconman.2014.11.023.
  • Bitzer, B. 2020. Bitzer Refrigerant Report 20. 48. Germany: BITZER Kühlmaschinenbau GmbH.
  • Cao, X., X. Liang, L. Shao, and C. Zhang. 2022. Performance analysis of an ejector-assisted two-stage evaporation single-stage vapor-compression cycle. Applied Thermal Engineering 205:118005. doi:10.1016/j.applthermaleng.2021.118005.
  • Chen, Q., M. Yu, G. Yan, and J. Yu. 2022. Thermodynamic analyses of a modified ejector enhanced dual temperature refrigeration cycle for domestic refrigerator/freezer application. Energy 244:122565. doi:10.1016/j.energy.2021.122565.
  • Direk, M., Ü. İşkan, C. Tunçkal, M. S. Mert, and F. Yüksel. 2022. An experimental investigation of ejector employed a dual-evaporator vapor compression refrigeration system under various entrainment ratios using R134a as the refrigerant. Sustainable Energy Technologies and Assessments 52:102293. doi:10.1016/j.seta.2022.102293.
  • Gao, Y., G. He, D. Cai, and M. Fan. 2020. Performance evaluation of a modified R290 dual-evaporator refrigeration cycle using two-phase ejector as expansion device. Energy 212:118614. doi:10.1016/j.energy.2020.118614.
  • Geng, L., H. Liu, X. Wei, Z. Hou, and Z. Wang. 2016. Energy and exergy analyses of a bi-evaporator compression/ejection refrigeration cycle. Energy Conversion and Management 130:71–80. doi:10.1016/j.enconman.2016.10.016.
  • Gullo, P., M. R. Kærn, M. Haida, J. Smolka, and S. Elbel. 2020. A review on current status of capacity control techniques for two-phase ejectors. International Journal of Refrigeration 119:64–79. doi:10.1016/j.ijrefrig.2020.07.014.
  • Heredia-Aricapa, Y., J. M. Belman-Flores, A. Mota-Babiloni, J. Serrano-Arellano, and J. J. García-Pabón. 2020. Overview of low GWP mixtures for the replacement of HFC refrigerants: R134a, R404A and R410A. International Journal of Refrigeration 111:113–10. doi:10.1016/j.ijrefrig.2019.11.012.
  • Işkan, Ü., and M. Direk. 2021. “Experimental investigation on the effect of expansion valves in a dual evaporator ejector refrigeration system using R134a and R456a.” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects Taylor & Francis, 1–15. doi:10.1080/15567036.2021.1982076.
  • İşkan, Ü., and M. Direk. 2022a. Experimental performance evaluation of the dual-evaporator ejector refrigeration system using environmentally friendly refrigerants of R1234ze(E), ND, R515a, R456a, and R516a as a replacement for R134a. Journal of Cleaner Production 352:131612. doi:10.1016/j.jclepro.2022.131612.
  • İşkan, Ü., and M. Direk. 2022b. Evaluation of the effects of entrainment ratios on the performance parameters of a refrigeration machine having dual evaporator ejector system with R134a and R456A. Thermal Science and Engineering Progress 33:101345. doi:10.1016/j.tsep.2022.101345.
  • Jeon, Y., D. Kim, J. Jung, D. S. Jang, and Y. Kim. 2018. Comparative performance evaluation of conventional and condenser outlet split ejector-based domestic refrigerator-freezers using R600a. Energy 161:1085–10. doi:10.1016/j.energy.2018.08.007.
  • Jeon, Y., D. Lee, and H. Cho. 2022. Optimization of motive nozzle position in a modified two-phase ejector expansion household refrigeration cycle using an artificial neural network. Energy Reports 8:1114–23. doi:10.1016/j.egyr.2021.12.033.
  • Kim, S., Y. Jeon, H. J. Chung, and Y. Kim. 2018. Performance optimization of an R410A air-conditioner with a dual evaporator ejector cycle based on cooling seasonal performance factor. Applied Thermal Engineering 131:988–89. doi:10.1016/j.applthermaleng.2017.12.012.
  • Kumar, V., A. Kumar, S. K. Yadav, A. Yadav, L. Prasad, and J. A. Winczek. 2022. Numerical analysis on a constant rate of kinetic energy change based a two-Stage ejector-Diffuser system. Strojniški Vestnik - Journal of Mechanical Engineering 68 (5):368–6. doi:10.5545/sv-jme.2021.7538.
  • Lawrence, N., and S. Elbel. 2013. Theoretical and practical comparison of two-phase ejector refrigeration cycles including first and second law analysis. International Journal of Refrigeration 36 (4):1220–12. doi:10.1016/j.ijrefrig.2013.03.007.
  • Lawrence, N., and S. Elbel. 2014. Experimental investigation of a two-phase ejector cycle suitable for use with low-pressure refrigerants R134a and R1234yf. International Journal of Refrigeration 38:310–12. doi:10.1016/j.ijrefrig.2013.08.009.
  • Lawrence, N. D. 2013. Analytical and experimental investigation of two-phase ejector cycles using low-pressure refrigerants. M.Sc. Thesis. Urbana, IL, USA.: University of Illinois at Urbana-Champaign.
  • Lee, S., Y. Chung, S. Kim, Y. Jeong, and M. S. Kim. 2022. Investigation on the performance enhancement of electric vehicle thermal management system utilizing floating loop with finite heat exchanger size. Energy Conversion and Management 255:115265. doi:10.1016/j.enconman.2022.115265.
  • Lemmon, E., M. L. Huber, and M. O. McLinden. 2013. “NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP.” Version 9.1.
  • Liang, K., M. Wang, C. Gao, B. Dong, C. Feng, X. Zhou, and J. Liu. 2021. Advances and challenges of integrated thermal management technologies for pure electric vehicles. Sustainable Energy Technologies and Assessments 46:101319. doi:10.1016/j.seta.2021.101319.
  • Liu, J., Y. Liu, and J. Yu. 2021. Performance analysis of a modified dual-ejector and dual-evaporator transcritical CO2 refrigeration cycle for supermarket application. International Journal of Refrigeration 131:109–9. doi:10.1016/j.ijrefrig.2021.06.010.
  • Moffat, R. J. 1988. Describing the uncertainties in experimental results. Experimental Thermal and Fluid Science 1 (1):3–17. doi:10.1016/0894-1777(88)90043-X.
  • Suresh, R., and S. P. Datta. 2022. Drop-in replacement of conventional automotive refrigeration system to hybrid-Ejector system with environment-Friendly refrigerants. Energy Conversion and Management 266:115819. doi:10.1016/j.enconman.2022.115819.
  • Sutthivirode, K., and T. Thongtip. 2022. Experimental investigation of a two-phase ejector installed into the refrigeration system for performance enhancement. Energy Report 8:7263–10. doi:10.1016/j.egyr.2022.05.236.
  • Tashtoush, B. M., M. A. Al-Nimr, and M. A. Khasawneh. 2019. A comprehensive review of ejector design, performance, and applications. Applied Energy 240:138–5. doi:10.1016/j.apenergy.2019.01.185.
  • Ünal, Ş., E. Cihan, M. T. Erdinç, and M. Bilgili. 2022. Influence of mixing section inlet and diffuser outlet velocities on the performance of ejector-expansion refrigeration system using zeotropic mixture. Thermal Science and Engineering Progress 33:101338. doi:10.1016/j.tsep.2022.101338.
  • Wang, M., Y. Cheng, and J. Yu. 2021. Analysis of a dual-temperature air source heat pump cycle with an ejector. Applied Thermal Engineering 193:116994. doi:10.1016/j.applthermaleng.2021.116994.
  • Zhang, Z., X. Feng, D. Tian, J. Yang, and L. Chang. 2020. Progress in ejector-expansion vapor compression refrigeration and heat pump systems. Energy Conversion and Management 207:112529. doi:10.1016/j.enconman.2020.112529.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.