82
Views
1
CrossRef citations to date
0
Altmetric
Research Article

The experimental study on deflagration dynamics of premixed flame in T-type tube

, , , , & ORCID Icon
Pages 7347-7364 | Received 08 Mar 2022, Accepted 25 Jul 2022, Published online: 07 Aug 2022

References

  • Bao, Q., Q. Fang, S. Yang, Y. Zhang, H. Xiang, L. Chen, and Z. Li . 2016. Experimental investigation on the deflagration load under unconfined methane-air explosions. Fuel 185:565–76. doi:10.1016/j.fuel.2016.07.126.
  • Bauwens, C. R., J. Chaffee, and S. B. Dorofeev. 2011. Vented explosion overpressures from combustion of hydrogen and hydrocarbon mixtures. International Journal of Hydrogen Energy 36 (3):2329–36. doi:10.1016/j.ijhydene.2010.04.005.
  • Bauwens, C. R., and S. B. Dorofeev. 2014. Effect of initial turbulence on vented explosion overpressures from lean hydrogen–air deflagrations. International Journal of Hydrogen Energy 39 (35):20509–15. doi:10.1016/j.ijhydene.2014.04.118.
  • Bimson, S. J., D. C. Bull, T. M. Cresswell, P. R. Marks, A. P. Masters, and A. Prothero . An experimental study of the physics of gaseous deflagration in a very large vented enclosure. Proceedings of the 14 th International Colloquium on the Dynamics of Explosions and Reactive Systems, Coimbra, Portugal, August. 1993.
  • Blanchard, R., D. Arndt, R. Grätz, M. Poli, and S. Scheider. 2010. Explosions in closed pipes containing baffles and 90 degree bends. Journal of Loss Prevention in the Process Industries 23 (2):253–59. doi:10.1016/j.jlp.2009.09.004.
  • Bychkov, V., V. Akkerman, G. Fru, A. Petchenko, and L. Eriksson. 2007. Flame acceleration in the early stages of burning in tubes. Combustion and Flame 150 (4):263–76. doi:10.1016/j.combustflame.2007.01.004.
  • Deng, H., M. Huang, X. Wen, G. Chen, F. Wang, and Z. Yao. 2020. Numerical investigation of premixed methane-air flame in two-dimensional half open tube in the early stages. Fuel (Guildford) 272:117709. doi:10.1016/j.fuel.2020.117709.
  • Diao, S., X. Wen, Z. Guo, W. He, H. Deng, and F. Wang. 2022. Experimental study of explosion dynamics of syngas flames in the narrow channel. International Journal of Hydrogen Energy 47 (40):17808–20. doi:10.1016/j.ijhydene.2022.03.258.
  • Fakandu, B. M., G. E. Andrews, and H. N. Phylaktou. 2015. Vent burst pressure effects on vented gas explosion reduced pressure. Journal of Loss Prevention in the Process Industries 36:429–38. doi:10.1016/j.jlp.2015.02.005.
  • Gonzalez, M., R. Borghi, and A. Saouab. 1992. Interaction of a flame front with its self-generated flow in an enclosure: The “tulip flame” phenomenon. Combustion and Flame 88 (2):201–20. doi:10.1016/0010-2180(92)90052-Q.
  • Gonzalez, M. 1996. Acoustic instability of a premixed flame propagating in a tube. Combustion and Flame 107 (3):245–59. doi:10.1016/S0010-2180(96)00069-7.
  • Jin, Kaiqiang . Experimental study on dynamics and suppression methods of premixed flame propagation in closed ducts. City University of Hong Kong; 2019.
  • Li, G., Y. Du, S. Qi, Y. Li, S. Wang, and B. Wang. 2016. Explosions of gasoline-air mixtures in a closed pipe containing a T-shaped branch structure. Journal of Loss Prevention in the Process Industries 43:529–36. doi:10.1016/j.jlp.2016.07.022.
  • Metzener, P., and M. Matalon. 2001. Premixed flames in closed cylindrical tubes. Combustion Theory and Modelling 5 (3):463–83. doi:10.1088/1364-7830/5/3/312.
  • Niu, Y., B. Shi, and B. Jiang. 2019. Experimental study of overpressure evolution laws and flame propagation characteristics after methane explosion in transversal pipe networks. Applied Thermal Engineering 154:18–23. doi:10.1016/j.applthermaleng.2019.03.059.
  • Ponizy, B., A. Claverie, and B. Veyssière. 2014. Tulip flame - the mechanism of flame front inversion. Combustion and Flame 161 (12):3051–62. doi:10.1016/j.combustflame.2014.06.001.
  • Qi, S., Y. Du, S. Wang, Y. Zhou, and G. Li. 2016. The effect of vent size and concentration in vented gasoline-air explosions. Journal of Loss Prevention in the Process Industries 44:88–94. doi:10.1016/j.jlp.2016.08.005.
  • Rui, S., Q. Wang, F. Chen, Q. Li, J. Guo, J. Wang, C. Wang, et al. 2022a. Effect of vent area on the vented methane-air deflagrations in a 1 m3 rectangular vessel with and without obstacles. Journal of Loss Prevention in the Process Industries 74: 104642. doi:10.1016/j.jlp.2021.104642.
  • Rui, S., Q. Wang, F. Chen, Q. Li, J. Guo, J. Wang, and C. Wang . 2022b. Effect of vent area on the vented methane-air deflagrations in a 1 m3 rectangular vessel with and without obstacles. Journal of Loss Prevention in the Process Industries 74:104642. doi:10.1016/j.jlp.2021.104642.
  • Starke, R., and P. Roth. 1986. An experimental investigation of flame behavior during cylindrical vessel explosions. Combustion and Flame 66 (3):249–59. doi:10.1016/0010-2180(86)90138-0.
  • Turns, S. R. 1996. Introduction to combustion. Vol. 287. New York, NY, USA: McGraw-Hill Companies.
  • Wang, C., J. Guo, K. Zhang, S. Du, H. Chen, and F. Yang. 2022. Experiments on duct-vented explosion of hydrogen–methane–air mixtures: Effects of equivalence ratio. Fuel 308:122060. doi:10.1016/j.fuel.2021.122060.
  • Xiao, H., Q. Wang, X. He, J. Sun, and X. Shen. 2011. Experimental study on the behaviors and shape changes of premixed hydrogen–air flames propagating in horizontal duct. International Journal of Hydrogen Energy 36 (10):6325–36. doi:10.1016/j.ijhydene.2011.02.049.
  • Yang, J., J. Guo, C. Wang, X. Wang, J. Li, S. Zhang, Z. Duan, and F. Yang . 2020a. Effect of equivalence ratio on hydrogen–methane–air deflagration in a duct with an open end. Fuel 280: 118694. doi:10.1016/j.fuel.2020.118694.
  • Yang, X., M. Yu, K. Zheng, P. Luan, and S. Han. 2020b. An experimental study on premixed syngas/air flame propagating across an obstacle in closed duct. Fuel 267:117200. doi:10.1016/j.fuel.2020.117200.
  • Yang, K., K. Chen, H. Ji, Z. Xing, Y. Hao, J. Wu, and J. Jiang, et al. 2021. Experimental study on the effect of modified attapulgite powder with different outlet blockage ratios on methane-air explosion. Energy 237: 121675. doi:10.1016/j.energy.2021.121675.
  • Yao, Z., H. Deng, W. Zhao, X. Wen, J. Dong, F. Wang, G. Chen, and Z. Guo . 2020. Experimental study on explosion characteristics of premixed syngas/air mixture with different ignition positions and opening ratios. Fuel 279:118426. doi:10.1016/j.fuel.2020.118426.
  • Yu, M., Y. Fu, L. Zheng, R. Pan, X. Wang, W. Yang, and H. Jin . 2021. Study on the combined effect of duct scale and SBC concentration on duct-vented methane-air explosion. Process Safety and Environmental Protection 148: 939–49. doi:10.1016/j.psep.2021.02.008.
  • Zhang, Q., G. Chen, Y. Xue, Q. Xu, and M. Xie. 2022. Effects of methane volume fractions and vent areas on dynamic characteristics of vented methane-air explosion in a half-open duct. Fuel 319:123762. doi:10.1016/j.fuel.2022.123762.
  • Zheng, K., M. Yu, L. Zheng, X. Wen, T. Chu, and L. Wang. 2017. Experimental study on premixed flame propagation of hydrogen/methane/air deflagration in closed ducts. International Journal of Hydrogen Energy 42 (8):5426–38. doi:10.1016/j.ijhydene.2016.10.106.
  • Zheng, L., G. Li, Y. Wang, X. Zhu, R. Pan, and Y. Wang. 2018a. Effect of blockage ratios on the characteristics of methane/air explosion suppressed by BC powder. Journal of Hazardous Materials 355:25–33. doi:10.1016/j.jhazmat.2018.04.070.
  • Zheng, L., X. Zhu, Y. Wang, G. Li, S. Yu, B. Pei, Y. Wang, and W. Wang . 2018b. Combined effect of ignition position and equivalence ratio on the characteristics of premixed hydrogen/air deflagrations. International Journal of Hydrogen Energy. 43(33):16430–41. doi:10.1016/j.ijhydene.2018.06.189.
  • Zhu, C., B. Lin, and B. Jiang. 2012. Flame acceleration of premixed methane/air explosion in parallel pipes. Journal of Loss Prevention in the Process Industries 25 (2):383–90. doi:10.1016/j.jlp.2011.10.004.
  • Zhu, Y., X. Qian, Z. Liu, P. Huang, and M. Yuan. 2015. Analysis and assessment of the Qingdao crude oil vapor explosion accident: Lessons learnt. Journal of Loss Prevention in the Process Industries 33:289–303. doi:10.1016/j.jlp.2015.01.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.