113
Views
4
CrossRef citations to date
0
Altmetric
Research Article

CO2 utilization for the production of liquid hydrocarbons by coupled steam and dry reforming of bioethanol

& ORCID Icon
Pages 7400-7412 | Received 23 Mar 2022, Accepted 25 Jul 2022, Published online: 17 Aug 2022

References

  • Anderson, J. E., D. M. DiCicco, J. M. Ginder, U. Kramer, T. G. Leone, H. E. Raney-Pablo, and T. J. Wallington. 2012. High octane number bioethanol-gasoline blends: Quantifying the potential benefits in the United States. Fuel 97:585–94. doi:10.1016/j.fuel.2012.03.017.
  • Bej, B., S. Bepari, N. C. Pradhan, and S. Neogi. 2017. Production of hydrogen by dry reforming of ethanol over aluminasupported nano-NiO/SiO2catalyst. Catalysis Today 291:58–66. doi:10.1016/j.cattod.2016.12.010.
  • Demirbas, A. 2009. Bioalcohols as alternatives to gasoline, energy sources, part A: Recovery, utilization, and environmental effects.
  • Elfasakhany, A. 2016. Engine performance evaluation and pollutant emissions analysis using ternary bio bioethanol-iso butanol-gasoline blends in gasoline engines. Journal of Cleaner Production 139:1057–67. doi:10.1016/j.jclepro.2016.09.016.
  • Farkha, S., P. Jaf, and W. Salih. 2016. Gasoline octane number improvement by ethanol as an oxygenated compound. American Journal of Oil and Chemical Technologies 4 (2):63–69.
  • Fekri Lari, M., M. Farsi, and M. R. Rahimpour. 2019. Modification of a tri-reforming reactor based on the feeding policy to couple with methanol and GTL units. Chemical Engineering Research and Design 144:107–14. doi:10.1016/j.cherd.2019.01.029.
  • Fernández-Torres, M. J., W. Dednam, and A. J. Caballero. 2022. Economic and environmental assessment of directly converting CO2 into a gasoline fuel. Energy Conversion and Management 252:115115. doi:10.1016/j.enconman.2021.115115.
  • Gallucci, F., M. Van Sint Annaland, and J. A. M. Kuipers. 2010. Pure hydrogen production via autothermal reforming of ethanol in a fluidized bed membrane reactor: A simulation study. International Journal of Hydrogen Energy 35 (4):1659–68. doi:10.1016/j.ijhydene.2009.12.014.
  • Ghazizahedi, Z., and M. Hayati-Ashtiani. 2020. Retrofitting isomerization process to increase gasoline quality and decrease CO2 emission along with energy analysis using pinch technology, energy sources, part A: Recovery, utilization, and environmental effects.
  • Graciano, J. E. A., A. D. Carreira, R. Giudici, and R. M. B. Alves. 2017. Production of fuels from CO2-rich natural gas using fischer-tropsch synthesis coupled to trireforming process. Computer Aided Chemical Engineering 40:2659–64.
  • Hernandez, B., and M. Martin. 2018. Optimization for biogas to chemicals via tri-reforming. Analysis of Fischer-Tropsch Fuels from Biogas. Energy Conversion and Management 174:998–1013.
  • Karamlu, R. 2020. Enhancing the production of liquid hydrocarbons by coupling blast furnace gas (BFG) of steelwork with syngas in GTL process, MS.c Thesis, Urmia University of Technology.
  • Kathiraser, Y., U. Oemar, E. T. Saw, Z. Li, and S. Kawi. 2015. Kinetic and mechanistic aspects for CO2 reforming of methane over Ni based catalysts. Chemical Engineering Journal 278:62–78. doi:10.1016/j.cej.2014.11.143.
  • Khademi, M. H., A. Alipour-Dehkordi, and M. Tabesh. 2021. Optimal design of methane tri-reforming reactor to produce proper syngas for Fischer-Tropsch and methanol synthesis processes: A comparative analysis between different side-feeding strategies. International Journal of Hydrogen Energy 46 (27):14441–54. doi:10.1016/j.ijhydene.2021.01.215.
  • Liu, H., C. F. Lee, M. Huo, and M. Yao. 2011. Comparison of bioethanol and butanol as additives in soybean biodiesel using a constant volume combustion chamber. Energy and Fuels 25 (4):1837–46. doi:10.1021/ef200111g.
  • Masum, B. M., H. H. Masjuki, M. A. Kalam, R. I. M. Fattah, S. M. Palash, and M. J. Abedin. 2013. Effect of bioethanol–gasoline blend on NOx emission in SI engine. Renewable Sustainable Energy Reviews 24:209–20. doi:10.1016/j.rser.2013.03.046.
  • Montazer-Rahmati, M. M., M. Bargah-Soleiman, and M. Bargah-Soleimani. 2001. Rate equations for the Fischer-Tropsch reaction on a promoted iron catalyst. Canadian Journal of Chemical Engineering 79 (5):800–04. doi:10.1002/cjce.5450790515.
  • Niazi, Z., A. Irankhah, Y. Wang, and H. Arandiyan. 2020. Cu, Mg and Co effect on nickel-ceria supported catalysts for bioethanol steam reforming reaction. International Journal of Hydrogen Energy 45 (41):21512–22. doi:10.1016/j.ijhydene.2020.06.001.
  • Rahimpour, M. R., and S. M. Jokar. 2012. Feasibility of flare gas reformation to practical energy in Farashband gas refinery: No gas flaring. Journal of Hazardous Materails 209-210:204–17. doi:10.1016/j.jhazmat.2012.01.017.
  • Rossetti, I., M. Compagnoni, and M. Torli. 2015. Process simulation and optimisation of H2 production from ethanol steam reforming and its use in fuel cells. 1. Thermodynamic and Kinetic Analysis Chemical Engineering Journal 281:1024–35.
  • Ruocco, C., V. Palma, and A. Ricca. 2019. Experimental and kinetic study of oxidative steam reforming of bioethanol over fresh and spent bimetallic catalysts. Chemical Engineering Journal 337:119778. doi:10.1016/j.cej.2018.08.164.
  • Taghizadeh-Damanabi, A., and F. Bahadori. 2017. Improving GTL process by CO2 utilization in tri-reforming reactor and application of membranes in Fisher Tropsch reactor. Journal of CO2 Utilization 21:227–37. doi:10.1016/j.jcou.2017.07.019.
  • Yousefi Amiri, T., K. Ghasemzageh, and A. Iulianelli. 2020. Membrane reactors for sustainable hydrogen production through steam reforming of hydrocarbons: A review. Chemical Engineering Processing: Process Intensification 157:108148. doi:10.1016/j.cep.2020.108148.
  • Ziolkowska, J. R. 2014. Prospective technologies, feedstocks and market innovations for bioethanol and biodiesel production. The US Biotech Report 4:94–98. doi:10.1016/j.btre.2014.09.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.