391
Views
3
CrossRef citations to date
0
Altmetric
Review

Oscillating flow heat transfer: a comprehensive review

ORCID Icon, ORCID Icon & ORCID Icon
Pages 7598-7619 | Received 02 Nov 2021, Accepted 03 Aug 2022, Published online: 25 Aug 2022

References

  • Ahmed, F., H. Huang, S. Ahmed, and X. Wang. 2020. A comprehensive review on modeling and performance optimization of stirling engine. International Journal of Energy Research 44 (8):6098–127. doi:10.1002/er.5214.
  • Akdag, U., and A. F. Ozguc. 2009. Experimental investigation of heat transfer in oscillating annular flow. International Journal of Heat and Mass Transfer 52 (11–12):2667–72. doi:10.1016/j.ijheatmasstransfer.2009.01.006.
  • Atrey, M. D. 1998. Thermodynamic analysis of Collins helium liquefaction cycle. Cryogenics 38 (12):1199–206. doi:10.1016/S0011-2275(98)00110-6.
  • Azadi, M., A. Jafarian, and M. Timaji. 2013. Analytical investigation of oscillating flow heat transfer in pulse tubes. Scence of I Iran 20:483–91. doi:10.1016/j.scient.2012.12.033.
  • Baik, J. H., and H. M. Chang. 1995. An exact solution for shuttle heat transfer. Cryogenics 35 (1):9–13. doi:10.1016/0011-2275(95)90418-F.
  • Bianchi, P., J. D. Williams, and C. O. Kappe. 2020. Oscillatory flow reactors for synthetic chemistry applications. Journal of Flow Chemistry 10 (3):475–90. doi:10.1007/s41981-020-00105-6.
  • Boroujerdi, A. A., and M. Esmaeili. 2015. Characterization of the frictional losses and heat transfer of oscillatory viscous flow through wire-mesh regenerators. Alexandria Engineering Journal 54 (4):787–94. doi:10.1016/j.aej.2015.06.001.
  • Bouvier, P., P. Stouffs, and J. P. Bardon. 2005. Experimental study of heat transfer in oscillating flow. International Journal of Heat and Mass Transfer 48 (12):2473–82. doi:10.1016/j.ijheatmasstransfer.2005.01.037.
  • Brereton, G. J., and S. M. Jalil. 2017. Diffusive heat and mass transfer in oscillatory pipe flow. Physics Fluids 29. doi:10.1063/1.4990976.
  • Caughley, A. 2015. Novel diaphragm free-piston stirling cryocooler. PhD Thesis, Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand.
  • Chatwin, P. C. 1975. On the longitudinal dispersion of passive contaminant in oscillatory flows in tubes. Journal of Fluid Mechanics 71 (3):513–27. doi:10.1017/S0022112075002716.
  • Dang, H., and Y. Zhao. 2016. CFD modeling and experimental verification of a single-stage coaxial Stirling-type pulse tube cryocooler without either double-inlet or multi-bypass operating at 30–35 K using mixed stainless steel mesh regenerator matrices. Cryogenics 78:40–50. doi:10.1016/j.cryogenics.2016.06.001.
  • Dodson, C., A. Razani, and T. Roberts. 2009. Numerical simulation of oscillating fluid flow in inertance Tubes. International cryocooler conference, Boulder CO. In Miller, S. D., Ross, R. G.(editors). p. 261–69. https://cryocooler.org/resources/Documents/C15/033.pdf
  • Dukhan, N., B. Ö, and L. A. Kavurmacioğlu. 2015. Effect of frequency on heat transfer due to oscillating water flow in open-cell metal foam: An experimental study. Experimental Thermal and Fluid Science 66:97–105. doi:10.1016/j.expthermflusci.2015.03.017.
  • Fan, A., D. Fulmer, and J. Hartenstine Experimental study of oscillating flow heat transfer. Proc. ASME Micro/Nanoscale Heat Transf. Int. Conf. MNHT 2008, Taiwan, vol. PART A, 2008, p. 347–54. doi:10.1115/MNHT2008-52118.
  • Fu, H. L., K. C. Leong, X. Y. Huang, and C. Y. Liu. 2001. An experimental study of heat transfer of a porous channel subjected to oscillating flow. Journal of Heat Transfer 123 (1):162–70. doi:10.1115/1.1336510.
  • Gawali, B. S., and K. G. Narayankhedkar. 2006. Performance prediction and experimental investigations on integral pulse tube cryocooler for 15 W at 70 K using indigenously developed linear cmpressor. AIP Conference Proceedings 823 I:11–18. doi:10.1063/1.2202395.
  • Gedeon, D. 1986. Mean parameter modeling of oscillating flow. Journal of Heat Transfer 108 (3):513–18. doi:10.1115/1.3246964.
  • Gifford, W. E., and R. C. Longsworth. 1964. Pulse-tube refrigeration. Transactions of the American Society of Mechanical Engineers 86:264–68.
  • Gustafson, S., B. Flake, and A. Razani. 2006. CFD simulation of oscillating flow in an inertance tube and its comparison to other models. AIP Conference Proceedings 823 II:1497–504. doi:10.1063/1.2202573.
  • Hachem, H., R. Gheith, F. Aloui, and S. Ben Nasrallah. 2018. Technological challenges and optimization efforts of the stirling machine: A review. Energy Conversion and Management 171:1365–87. doi:10.1016/j.enconman.2018.06.042.
  • Hossain, M. A., A. Ameri, J. W. Gregory, and J. Bons. 2021. Effects of fluidic oscillator nozzle angle on the flowfield and impingement heat transfer. AIAA Journal 59 (6):2113–25. doi:10.2514/1.j059931.
  • Howes, T., M. R. Mackley, and E. P. L. Roberts. 1991. The simulation of chaotic mixing and dispersion for periodic flows in baffled channels. Chemical Engineering Science 46 (7):1669–77. doi:10.1016/j.ijheatmasstransfer.2013.07.073.
  • Huang, J., M. Liu, and T. Jin. 2017. A comprehensive empirical correlation for finned heat exchangers with parallel platesworking in oscillating flow. Applied Sciences 7 (2):117. doi:10.3390/app7020117.
  • Jaeger, M. J., and U. H. Kurzweg. 1983. Determination of the longitudinal dispersion coefficient in flows subjected to high-frequency oscillations. Physics of Fluids 26 (6):1380–82. doi:10.1063/1.864323.
  • Jalil, S. M. 2019. Experimental and numerical investigation of axial heat transfer enhancement by oscillatory flows. International Journal of Thermal Sciences 137:352–64. doi:10.1016/j.ijthermalsci.2018.11.035.
  • Jalil, S. M. 2020. Numerical characterization of viscous heat dissipation rate in oscillatory air flow. Journal of Heat Transfer 142. doi:10.1115/1.4045173.
  • Jalil, S. M. 2021. Mathematical and numerical predictions for optimum perfect mixing by bulk convective oscillatory exchange. International Journal of Heat and Mass Transfer 167:120792. doi:10.1016/j.ijheatmasstransfer.2020.120792.
  • Jo, J., and S. J. Kim. 2017. Heat transfer by oscillating flows in a parallel plate channel with a sinusoidal wall temperature distribution, Proceedings of the Asian Conference on Thermal Sciences, March 26-30, 2017, ACTS-P00080, Jeju Island, Korea, 1st ACTS. p. 1–5.
  • Jung, J., and S. Jeong. 2005. Expansion efficiency of pulse tube in pulse tube refrigerator including shuttle heat transfer effect. Cryogenics 45 (5):386–96. doi:10.1016/j.cryogenics.2005.01.005.
  • Kamsanam, W., X. Mao, and A. J. Jaworski. 2016. Thermal performance of finned-tube thermoacoustic heat exchangers in oscillatory flow conditions. International Journal of Thermal Sciences 101:169–80. doi:10.1016/j.ijthermalsci.2015.10.032.
  • Kardgar, A., and D. Domiri. 2020. Wall thermal inertia effects of pulsatile flow in a ribbed tube : A numerical approach. Journal of Heat and Mass Transfer Research 7:85–94. doi:10.22075/jhmtr.2020.19899.1279.
  • Kaviany, M. 1986. Some aspects of enhanced heat diffusion in fluids by oscillation. International Journal of Heat and Mass Transfer 29 (12):2002–06. doi:10.1016/0017-9310(86)90022-0.
  • Kaviany, M. 1990. Performance of heat exchanger based on enhanced heat diffusion in fluid by oscillation: Anlysis. Journal of Heat Transfer 112 (1):49–55. doi:10.1115/1.2910363.
  • Kaviany, M., and M. Reckker. 1990. Performance of a heat exchanger based on enhanced heat diffusion in fluid by oscillation. Journal of Heat Transfer 112 (1):56–63. doi:10.1115/1.2910364.
  • Khalde, C. M., A. V. Pandit, J. S. Sangwai, and V. V. Ranade. 2019. Flow, mixing, and heat transfer in fluidic oscillators. The Canadian Journal of Chemical Engineering 97 (2):542–59. doi:10.1002/cjce.23377.
  • Kim, S. K., S. Y. Kim, and Y. D. Choi. 2009. Effect of flow oscillation on thermal dispersion in a thin water-filled heat spreader. IEEE Transactions on Components and Packaging Technologies 32 (2):235–42. doi:10.1063/1.3663452.
  • Kongtragool, B., and S. Wongwises. 2003. A review of solar-powered stirling engines and low temperature differential stirling engines. Renewable and Sustainable Energy Reviews 7 (2):131–54. doi:10.1016/S1364-0321(02)00053-9.
  • Kuosa, M., K. Saari, A. Kankkunen, and T. M. Tveit. 2012. Oscillating flow in a stirling engine heat exchanger. Applied Thermal Engineering 45-46:15–23. doi:10.1016/j.applthermaleng.2012.03.023.
  • Kurzweg, U. H. 1985a. Enhanced heat conduction in oscillating viscous flows within parallel-plate channels. Journal of Fluid Mechanics 156 (–1):291–300. doi:10.1017/S0022112085002105.
  • Kurzweg, U. H. 1985b. Enhanced heat conduction in fluids subjected to sinusoidal oscillations. Journal of Heat Transfer 107 (2):459–62. doi:10.1115/1.3247437.
  • Kurzweg, U. H. 1986. Temporal and spatial distribution of heat flux in oscillating flow subjected to an axial temperature gradient. International Journal of Heat and Mass Transfer 29 (12):1969–77. doi:10.1016/0017-9310(86)90016-5.
  • Kurzweg, U. H., and L. De Zhao. 1984. Heat transfer by high-frequency oscillations: A new hydrodynamic technique for achieving large effective thermal conductivities. Physics of Fluids 27 (11):2624–27. doi:10.1063/1.864563.
  • Kurzweg, U. H., G. Howell, and M. J. Jaeger. 1984. Enhanced dispersion in oscillatory flows. Physics of Fluids 27 (5):1046–48. doi:10.1063/1.864752.
  • Lee, D. Y., S. J. Park, and S. T. Ro. 1995. Heat transfer by oscillating flow in a circular pipe with a sinusoidal wall temperature distribution. International Journal of Heat and Mass Transfer 38 (14):2529–37. doi:10.1016/0017-9310(95)00020-A.
  • Liu, X., C. Chen, Q. Huang, S. Wang, Y. Hou, and L. Chen. 2017. Modeling of heat transfer and oscillating flow in the regenerator of a pulse tube cryocooler operating at 50 Hz. Applied Sciences 7 (6):553. doi:10.3390/app7060553.
  • Martini, W. 1983. Stirling Engine Design Manual, NASA CR-168088. NASA, Lewis Research Center:United States Department of Energy.
  • McDonough, J. R., S. M. R. Ahmed, A. N. Phan, and A. P. Harvey. 2017. A study of the flow structures generated by oscillating flows in a helical baffled tube. Chemical Engineering Science 171:160–78. doi:10.1016/j.ces.2017.05.032.
  • McDonough, J. R., A. N. Phan, and A. P. Harvey. 2015. Rapid process development using oscillatory baffled mesoreactors - A state-of-the-art review. Chemical Engineering Journal 265:110–21. doi:10.1016/j.cej.2014.10.113.
  • Mikulin, E. I., A. A. Tarasov, and M. P. Shkrebyonock. 1984. Low-temperature expansion pulse tubes. Advances in Cryogenic Engineering 29:629–37.
  • Ming, T., Z. Wang, X. Liao, T. Shi, G. Tan, and Y. Wu. 2021. Unsteady RANS simulation of fluid dynamic and heat transfer in an oblique self-oscillating fluidic oscillator array. International Journal of Heat and Mass Transfer 177:121515. doi:10.1016/j.ijheatmasstransfer.2021.121515.
  • Mochizuki, S., A. Murata, and H. Saito. 2007. Axial heat transport mechanism due to reciprocating flow in a ribbed tube. Japan Society of Mechanical Engineers, Part B 73:276–82. doi:10.1299/kikaib.73.276.
  • Muñoz-Cámara, J., D. Crespí-Llorens, J. P. Solano, and P. Vicente. 2021. Baffled tubes with superimposed oscillatory flow: Experimental study of the fluid mixing and heat transfer at low net Reynolds numbers. Experimental Thermal and Fluid Science 123. doi:10.1016/j.expthermflusci.2020.110324.
  • Nam, K., and S. Jeong. 2005. Novel flow analysis of regenerator under oscillating flow with pulsating pressure. Cryogenics 45 (5):368–79. doi:10.1016/j.cryogenics.2005.01.001.
  • Nishio, S., X. H. Shi, and W. M. Zhang. 1995. Oscillation-induced heat transport: Heat transport characteristics along liquid-columns of oscillation-controlled heat transport tubes. International Journal of Heat and Mass Transfer 38 (13):2457–70. doi:10.1016/0017-9310(94)00372-3.
  • Ohno, Y., G. Tanaka, and M. Hishida. 2006. Enhanced heat transfer during oscillatory flow in annular channels. Heat Transfer—Asian Research 35 (1):61–74. doi:10.1002/htj.20094.
  • Pamuk, M. T. 2018. A new heat transfer correlation for oscillating fluid flow. Thermal Science 22 (6 Part A):2459–66. doi:10.2298/TSCI160126215P.
  • Pamuk, M. T., and M. Özdemir. 2012. Heat transfer in porous media of steel balls under oscillating flow. Experimental Thermal and Fluid Science 42:79–92. doi:10.1016/j.expthermflusci.2012.04.015.
  • Pan, C., T. Zhang, J. Wang, and Y. Zhou. 2018. CFD study of heat transfer and pressure drop for oscillating flow in helical rectangular channel heat exchanger. International Journal of Thermal Sciences 129:106–14. doi:10.1016/j.ijthermalsci.2018.02.035.
  • Patil, J. D., and B. S. Gawali. 2017a. Experimental study of heat transfer characteristics in oscillating fluid flow in tube. Experimental Heat Transfer 30 (4):328–40. doi:10.1080/08916152.2016.1258018.
  • Patil, J. D., and B. S. Gawali. 2017b. Experimental investigation of heat transfer enhancement factors in the oscillating flow heat exchanger using Kurzweg’s and Nishio’s correlations. Experimental Thermal and Fluid Science 83:37–46. doi:10.1016/j.expthermflusci.2016.12.014.
  • Peng, W., M. Xu, X. Huai, Z. Liu, and L. X. 2017. Performance evaluation of oscillating flow regenerators filled with particles, wire screens and high porosity open-cell foams. Applied Thermal Engineering 112:1612–25. doi:10.1016/j.applthermaleng.2016.10.125.
  • Piccolo, A., and A. J. Jaworski. 2020. Experimental study of heat transfer characteristics of finned-tube and circular-pore heat exchangers in oscillatory flow. Applied Thermal Engineering 181:116022. doi:10.1016/j.applthermaleng.2020.116022.
  • Sert, C., and A. Beskok. 2002. Oscillatory flow forced convection in micro heat spreaders. Numerical Heat Transfer, Part A: Applications 42 (7):685–705. doi:10.1080/1040778029005976.
  • Sert, C., and A. Beskok. 2003. Numerical simulation of reciprocating flow forced convection in two-dimensional channels. Journal of Heat Transfer 125 (3):403–12. doi:10.1115/1.1565092.
  • Shailendhra, K., and S. P. Anjali Devi. 2011. On the enhanced heat transfer in the oscillatory flow of liquid metals. Journal of Applied Fluid Mechanics 4:57–62.
  • Shaowei, Z., W. Peiyi, and C. Zhongqi. 1990. Double inlet pulse tube refrigerators: An important improvement. Cryogenics 30 (6):514–20. doi:10.1016/0011-2275(90)90051-D.
  • Shin, H. T., and S. Nishio. 1997. Oscillation-controlled heat transport tube (heat transfer coefficient in tubes at heating and cooling regions). Japan Society of Mechanical Engineers, Part B 63:1367–74. doi:10.1299/kikaib.63.1367.
  • Shokouhmand, H., A. Mosahebi, and B. Karami Numerical simulation and optimization of heat transfer in reciprocating flows in two dimensional channels. Proc. World Congr. Eng, London, UK., vol. II, 2008, p. 3–8.
  • Stephens, C. G., and M. R. Mackley. 2002. Heat transfer performance for batch oscillatory flow mixing. Experimental Thermal and Fluid Science 25 (8):583–94. doi:10.1111/j.1365-2966.2005.09521.x.
  • Sun, Z. F., and C. G. Carrington. 1996a. Oscillating flow modelling of a stirling cycle cryocooler. Advances in Cryogenic Engineering 41:1543–50.
  • Sun, Z. F., and C. G. Carrington. 1996b. Simulation and Second Law Analysis of a Miniature Stirling Cycle Cryocooler. Advances in Cryogenic Engineering 41:1551–60. doi:10.1007/978-1-4613-0373-2_195.
  • Tanaka, M., I. Yamashita, and F. Chisaka. 1990. Flow and heat transfer characteristics of the stirling engine regenerator in an oscillating flow. JSME International Journal 33:283–89.
  • Tang, K., J. Yu, T. Jin, and Z. H. Gan. 2013. Influence of compression-expansion effect on oscillating-flow heat transfer in a finned heat exchanger. Journal of Zhejiang University Science A 14 (6):427–34. doi:10.1631/jzus.A1300076.
  • Tang, K., J. Yu, T. Jin, Y. P. Wang, W. T. Tang, and Z. H. Gan. 2014. Heat transfer of laminar oscillating flow in finned heat exchanger of pulse tube refrigerator. International Journal of Heat and Mass Transfer 70:811–18. doi:10.1016/j.ijheatmasstransfer.2013.11.067.
  • Taylor, G., and A. Prsl. 1954. The dispersion of matter in turbulent flow through a pipe. Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences 223:446–68. doi:10.1098/rspa.1954.0130.
  • Trevizoli, P., Y. Liu, A. Tura, A. Rowe, and J. Barbosa. 2014. Experimental assessment of the thermal-hydraulic performance of packed-sphere oscillating-flow regenerators using water. Experimental Thermal and Fluid Science 57:324–34. doi:10.1016/j.expthermflusci.2014.06.001.
  • Trevizoli, P. V., G. F. Peixer, and J. R. Barbosa. 2016. Thermal-hydraulic evaluation of oscillating-flow regenerators using water: Experimental analysis of packed beds of spheres. International Journal of Heat and Mass Transfer 99:918–30. doi:10.1016/j.ijheatmasstransfer.2016.03.014.
  • Tsimpoukis, A., S. Naris, and D. Valougeorgis. 2021. Oscillatory pressure-driven rarefied binary gas mixture flow between parallel plates. Physical Review E 103 (3):1–17. doi:10.1103/PhysRevE.103.033103.
  • Vafai, K., and M. Sözen. 1991. Analysis of oscillating compressible flow through a packed bed. International Journal of Heat and Fluid Flow 12 (2):130–36. doi:10.1016/0142-727X(91)90039-X.
  • Wälchli, R., T. Brunschwiler, B. Michel, and D. Poulikakos. 2010. Self-contained, oscillating flow liquid cooling system for thin form factor high performance electronics. Journal of Heat Transfer 132 (5):1–9. doi:10.1115/1.4000456.
  • Watson, E. J. 1983. Diffusion in oscillatory pipe flow. Journal of Fluid Mechanics 133:233–44. doi:10.1017/S0022112083001883.
  • Will, M. E., and A. T. A. M. De Waele. 2004. Counterflow pulse-tube refrigerator. Cryocoolers 13:251–60.
  • Wu, Y., S. Yu, and L. Zuo. 2019. Large eddy simulation analysis of the heat transfer enhancement using self-oscillating fluidic oscillators. International Journal of Heat and Mass Transfer 131:463–71. doi:10.1016/j.ijheatmasstransfer.2018.11.070.
  • Xiao, G., H. Peng, H. Fan, U. Sultan, and M. Ni. 2017. Characteristics of steady and oscillating flows through regenerator. International Journal of Heat and Mass Transfer 108:309–21. doi:10.1016/j.ijheatmasstransfer.2016.11.096.
  • Xiao, G., T. Zhou, M. Ni, C. Chen, Z. Luo, and K. Cen. 2014. Study on oscillating flow of moderate kinetic Reynolds numbers using complex velocity model and phase Doppler anemometer. Applied Energy 130:830–37. doi:10.1016/j.apenergy.2014.02.005.
  • Yin, D., and H. B. Ma. 2013. Analytical solution of oscillating flow in a capillary tube. International Journal of Heat and Mass Transfer 66:699–705. doi:10.1016/j.ijheatmasstransfer.2013.07.073.
  • Yuan, K., L. Wang, Y. K. Hou, Y. Zhou, J. T. Liang, and Y. L. Ju. 2003. Oscillating Flow Characteristics of a Regenerator under Low Temperature Conditions. Cryocoolers 12:539–45. doi:10.1007/0-306-47919-2_71.
  • Zhao, T. S., and P. Cheng. 1996. Oscillatory heat transfer in a pipe subjected to a laminar reciprocating flow. Journal of Heat Transfer 118 (3):592–97. doi:10.1115/1.2822673.
  • Zhao, Y., and H. Dang. 2016. CFD simulation of a miniature coaxial Stirling-type pulse tube cryocooler operating at 128 Hz. Cryogenics 73:53–59. doi:10.1016/j.cryogenics.2015.11.007.
  • Zhao, Y., G. Yu, J. Tan, X. Mao, J. Li, R. Zha, N. Li, H. Dang. 2018. CFD modeling and experimental verification of oscillating flow and heat transfer processes in the micro coaxial Stirling-type pulse tube cryocooler operating at 90–170 Hz. Cryogenics 90:30–40. doi:10.1016/j.cryogenics.2018.01.003.
  • Zhu, S. W., S. L. Zhou, N. Yoshimura, and Y. Matsubara. 1997. Phase shift effect of the long neck tube for the pulse tube refrigerator. Cryocoolers 9:269–78. doi:10.1007/978-1-4615-5869-9_32.
  • Zimmerman, F. J., and R. C. Longsworth. 1971. Shuttle heat transfer. Advances in Cryogenic Engineering 16:342–51. doi:10.1007/978-1-4757-0528-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.