188
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synthesis of needle coke by co-carbonization of coal liquefaction pitch and refined soft pitch

, , , , , , ORCID Icon & show all
Pages 7514-7530 | Received 23 Nov 2021, Accepted 09 Aug 2022, Published online: 21 Aug 2022

References

  • Chen, S. L., S. P. Xie, C. L. Fan, J. G. Guo, and X. K. Li. 2018. Microstructure and performance of carbonization products of component from soft coal pitch . Journal of Saudi Chemical Society 22:316–21. doi:10.1016/j.jscs.2016.06.003.
  • Cheng, J. X., Z. J. Lu, X. F. Zhao, X. X. Chen, and Y. H. Liu. 2021. Green needle coke-derived porous carbon for high-performance symmetric supercapacitor. Journal of Power Sources 494:229770. doi:10.1016/j.jpowsour.2021.229770.
  • Dong, S. A., X. J. He, H. F. Zhang, X. Y. Xie, M. X. Yu, C. Yu, N. Xiao, and J. S. Qiu. 2018. Surface modification of biomass-derived hard carbon by grafting porous carbon nanosheets for high-performance supercapacitors . Journal of Materials Chemistry A 6:15954–60. doi:10.1039/C8TA04080J.
  • Gabdulkhakov, R. R., V. A. Rudko, and I. N. Pyagay. 2021. Methods for modifying needle coke raw materials by introducing additives of various origin (review) . Fuel 310:122265. doi:10.1016/j.fuel.2021.122265.
  • Gao, L. J., X. F. Zhao, S. Q. Lai, J. X. Cheng, and Y. Q. Lu. 2009. Compositions and structure characterizations of coal tar refined soft pitch . Spectroscopy and Spectral Analysis 29 (8):2152–56.
  • Gargiulo, V., B. Apicella, M. Alfè, C. Russo, F. Stanzione, A. Tregrossi, A. Amoresano, M. Millan, and A. Ciajolo. 2015. Structural characterization of large polycyclic aromatic hydrocarbons. part 1: the case of coal tar pitch and naphthalene-derived pitch. Energy & Fuels 29 (9):5714–22. doi:10.1021/acs.energyfuels.5b01327.
  • Gargiulo, V., B. Apicella, F. Stanzione, A. Tregrossi, M. Millan, A. Ciajolo, and C. Russo. 2016. Structural characterization of large polycyclic aromatic hydrocarbons. part 2: solvent-separated fractions of coal tar pitch and naphthalene-derived pitch. Energy & Fuels 30 (4):2574–83. doi:10.1021/acs.energyfuels.5b02576.
  • Hao, M. Y., N. Xiao, Y. W. Wang, H. Q. Li, Y. Zhou, C. Liu, and J. S. Qiu. 2018. Pitch-derived N-doped porous carbon nanosheets with expanded interlayer distance as high-performance sodium-ion battery anodes. Fuel Processing Technology 177:328–35. doi:10.1016/j.fuproc.2018.05.007.
  • He, X. J., X. J. Li, H. Ma, J. F. Han, H. Zhang, C. Yu, N. Xiao, and J. S. Qiu. 2017. ZnO template strategy for the synthesis of 3D interconnected graphene nanocapsules from coal tar pitch as supercapacitor electrode materials . Journal of Power Sources 340:183–91. doi:10.1016/j.jpowsour.2016.11.073.
  • Hu, H., and M. B. Wu. 2020. Heavy oil-derived carbon for energy storage applications. Journal of Materials Chemistry A 8:7066–82. doi:10.1039/D0TA00095G.
  • Ji, J., Z. Wang, R. Zhang, J. M. Wei, Z. Suo, Z. P. You, and J. P. Hu. 2020. Rutting resistance of direct coal liquefaction residue (DCLR) modified asphalt mixture under variable loads over a wide temperature range. Construction and Building Materials 257:119489. doi:10.1016/j.conbuildmat.2020.119489.
  • Ji, J., H. Yao, W. H. Zheng, Z. Suo, Y. F. Shi, Y. Xu, H. Wu, and Z. P. You. 2017. Preparation and properties of asphalt binders modified by thfs extracted from direct coal liquefaction residue. Applied Science 7 (11):1155. doi:10.3390/app7111155.
  • Kondrasheva, N. K., V. A. Rudko, and J. Ancheyta. 2020. Thermogravimetric determination of the kinetics of petroleum needle coke formation by decantoil thermolysis. ACS Omega 5 (45):29570–76. doi:10.1021/acsomega.0c04552.
  • Lei, L., L. Xiongchao, Z. Yukun, D. Jinze, X. Deping, and W. Yonggang. 2020. Characteristics of the mesophase and needle coke derived from the blended coal tar and biomass tar pitch . Fuel 150:104889.
  • Li, L., X. C. Lin, Y. K. Zhang, J. Z. Dai, D. P. Xu, and Y. G. Wang. 2020. Characteristics of the mesophase and needle coke derived from the blended coal tar and biomass tar pitch. Journal of Analytical and Applied Pyrolysis 150:104889. doi:10.1016/j.jaap.2020.104889.
  • Lin, X. C., Z. Sheng, K. K. Shao, D. P. Xu, and Y. G. Wang. 2021. Influence of group component distribution of coal tar pitch on mesophase structure development of needle coke . Journal of Fuel Chemistry and Technology 49 (2):151–59.
  • Ma, Z. H., X. Y. Wei, G. H. Liu, F. J. Liu, and Z. M. Zong. 2021. Value-added utilization of high-temperature coal tar: A review. Fuel 292:119954. doi:10.1016/j.fuel.2020.119954.
  • Moon, T. 2021. Design integrates delayed coking, needle coke production processes . Oil & Gas Journal 119 (9):84–86.
  • Qian, S. A., X. Z. Song, R. L. Fan, and C. F. Li. 1981. The microstructural characteristics of needle cokes-new concept on evaluation of needle coke properties. Journal of Fuel Chemistry and Technology 9 (2):105–22.
  • Sun, D., L. Zhao, Z. H. Xiao, K. Zhao, R. D. Lin, H. M. Song, X. L. Zhang, X. L. Ma, C. Peng, X. Q. Huang, et al. 2022. Boosting of reversible capacity delivered at a low voltage below 0.5 V in mildly expanded graphitized needle coke anode for a high-energy lithium ion battery. Journal of Energy Chemistry 74:100–10. doi:10.1016/j.jechem.2022.07.013.
  • Sun, M., D. Zhang, M. H. Huang, J. Chen, X. Tang, C. He, Ma XX, and X. Ma. 2017. Properties and carbonization behavior of asphalt modified with the THF-soluble fraction of a coalliquefaction residue. Prtroleum Science and Technology 35 (7):674–80. doi:10.1080/10916466.2016.1271811.
  • Tian, Y. C., Y. Huang, X. L. Yu, F. Gao, S. H. Gao, F. L. Wang, D. Li, X. Xu, L. W. Cui, X. Y. Fan, et al. 2021. Co-carbonization of medium- and low-temperature coal tar pitch and coal-based hydrogenated diesel oil prepare mesophase pitch for needle coke precursor. Advanced Engineering Materials 23 (10):2001523. doi:10.1002/adem.202001523.
  • Wang, C. Y., M. M. Chen, and M. W. Li. Pitch-Based Carbon Materials. Beijing: Chemical Industry Press; 2018.
  • Wang, Y., Y. W. Dong, C. G. Zhong, and Q. Cao. 2017. The effect of mechanical vibration on the structure of needle coke prepared from a modified coal tar pitch . New Carbon Materials 32 (5):467–73.
  • Wei, J. M., S. Z. Zhang, Y. Sheng, X. Y. Gong, C. Chen, and J. Jow. 2020. Super hard asphalt (SHA) from direct coal liquefaction process as pavement material . Journal of Cleaner Production 274:123815. doi:10.1016/j.jclepro.2020.123815.
  • Wei, L. G., W. Mao, F. R. Yu, T. Su, J. Chen, H. Y. He, M. Y. Zou, S. J. Wang, and J. M. Lin. 2021. Solid-state synthesis of Ni decorated needle coke as low-cost pt-free counter electrode for efficient dye-sensitized solar cells . Chemistryselect 6 (26):6781–87. doi:10.1002/slct.202102035.
  • Yu, Y. Y., F. Wang, B. W. Biney, K. Q. Li, S. H. Jiao, K. Chen, H. Liu, and A. J. Guo. 2022. Co-carbonization of ethylene tar and fluid catalytic cracking decant oil: Development of high-quality needle coke feedstock. Fuel 322:124170. doi:10.1016/j.fuel.2022.124170.
  • Yuli, Y., T. H. Anh, D. Mursida, D. Muldarisnur, T. Erman, and Q. C. Minh. 2020. Synthesis of activated carbon monolith derived from cocoa pods for supercapacitor electrodes application. Energy Sources Part A: Recovery, Utilization, and Enviromental Effects. doi:10.1080/15567036.2020.1811433.
  • Zhang, Z. C., H. Du, D. H. Guo, B. Lou, R. Yu, X. Gong, Z. H. Li, M. Li, Y. J. Duan, H. Z. Yuan, et al. 2021a. Probing the effect of molecular structure and compositions in extracted oil on the characteristics of needle coke . Fuel 301:120984. doi:10.1016/j.fuel.2021.120984.
  • Zhang, Z. C., H. Du, S. H. Guo, Z. J. Chen, F. S. Wen, N. Shi, M. Li, B. Wu, G. Li, J. G. Zhang, et al. 2021b. The effect of heat pretreatment of heavy oil on the pyrolysis performance and structural evolution of needle coke . Journal of Analytical and Applied Pyrolysis 157:105172. doi:10.1016/j.jaap.2021.105172.
  • Zhang, Z. C., X. Q. Huang, L. J. Zhang, S. H. Guo, H. Du, Z. J. Chen, B. Wu, G. Li, and D. Liu. 2021c. Study on the evolution of oxygenated structures in low-temperature coal tar during the preparation of needle coke by co-carbonization . Fuel 307:121811. doi:10.1016/j.fuel.2021.121811.
  • Zhang, Z. C., Z. H. Wang, L. J. Zhang, J. J. Cui, S. H. Guo, H. H. Ji, Y. J. Liu, G. L. Zhao, W. Zhu, C. Jiao, et al. 2022. Study on the co-carbonization behavior of high-temperature coal tar pitch and raffinate oil of low-temperature coal tar. Fuel 310:122469. doi:10.1016/j.fuel.2021.122469.
  • Zhichen, Z., L. Bin, Z. Ning, Y. Enqiang, W. Zenghao, D. Hui, C. Zhaojun, and L. Dong. 2021. Co-carbonization behavior of the blended heavy oil and low temperature coal tar for the preparation of needle coke . Fuel 302:121139. doi:10.1016/j.fuel.2021.121139.
  • Zhong, Y., L. Xu, C. Li, B. Zhang, and W. J. Wu. 2019. Needle coke: A predominant carbon black alternative for printable triple mesoscopic perovskite solar cells . Carbon 153:602–08. doi:10.1016/j.carbon.2019.07.038.
  • Zhu, Y. M., C. S. Hu, Y. L. Xu, C. L. Zhao, X. T. Yin, and X. F. Zhao. 2020a. Preparation and characterization of coal pitch-based needle coke (Part II): The effects of β resin in refined coal pitch . Energy & Fuels 34:2126–34. doi:10.1021/acs.energyfuels.9b03406.
  • Zhu, Y. M., H. M. Liu, X. L. Hu, C. S. Zhao, C. L. Cheng, J. X. Chen, X. X. Zhao, and X. Zhao. 2020b. Preparation and characterization of coal pitch-based needle coke (Part III): The effects of quinoline insoluble in coal tar pitch . Energy & Fuels 34:8676–84. doi:10.1021/acs.energyfuels.0c01049.
  • Zhu, Y. M., S. S. Sun, Y. L. Xu, C. L. Zhao, C. S. Hu, J. X. Cheng, and X. F. Zhao. 2020c. Preparation and characterization of pitch coke from oxidized polymerized pitch. Asia-Pacific Journal of Chemical Engineering 15:e2497.
  • Zhu, Y. M., Y. L. Xu, C. S. Hu, X. T. Yin, C. L. Zhao, L. J. Gao, and X. F. Zhao. 2019a. Preparation and characterization of mosaic coke from heavy-phase coal pitch. Asia-pacific Journal of Chemical Engineering 15:e2369.
  • Zhu, Y. M., C. L. Zhao, Y. L. Xu, C. S. Hu, and X. F. Zhao. 2019b. Preparation and characterization of coal pitch-based needle coke (Part I): The effects of aromatic index (fa) in refined coal pitch . Energy & Fuels 33:3456–64. doi:10.1021/acs.energyfuels.9b00160.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.