151
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Green diesel rich product (C-15) from the hydro-deoxygenation of refined palm oil over activated NH4+-Indonesian natural zeolite

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 7483-7498 | Received 21 Feb 2022, Accepted 03 Aug 2022, Published online: 21 Aug 2022

References

  • Ameen, M., M. Tazli Azizan, S. Yusup, A. Ramli, M. Yasir, H. Kaur, and C. Kin Wai. 2019. H-Y zeolite as hydrodeoxygenation catalyst for diesel range hydrocarbon production from rubber seed oil. Materials Today: Proceedings, Lengkawi, Malaysia, 16, 1742–49. doi:10.1016/j.matpr.2019.06.044.
  • Arumugam, M., C. K. Goh, Z. Zainal, S. Triwahyono, A. F. Lee, K. Wilson, and Y. H. Taufiq‐yap. 2021. Hierarchical HZSM‐5 for catalytic cracking of oleic acid to biofuels. Nanomaterials 11 (3):1–11. doi:10.3390/nano11030747.
  • Ates, A., and C. Hardacre. 2012. The effect of various treatment conditions on natural zeolites: Ion exchange, acidic, thermal and steam treatments. Journal of Colloid and Interface Science 372 (1):130–40. doi:10.1016/j.jcis.2012.01.017.
  • Barbera, K., P. Lanzafame, S. Perathoner, G. Centi, M. Migliori, A. Aloise, and G. Giordano. 2016. HMF etherification using NH4-exchanged zeolites. New Journal of Chemistry 40 (5):4300–06. doi:10.1039/c5nj03461b.
  • Beheshti, M. S., M. Behzad, J. Ahmadpour, and H. Arabi. 2020. Modification of H-[B]-ZSM-5 zeolite for methanol to propylene (MTP) conversion: investigation of extrusion and steaming treatments on physicochemical characteristics and catalytic performance. Microporous and Mesoporous Materials 291 April 2019:109699. doi:10.1016/j.micromeso.2019.109699.
  • Bonelli, B., M. Armandi, C. O. Areán, and E. Garrone. 2010. Ammonia-solvated ammonium species in the NH4-ZSM-5 zeolite. ChemPhysChem 11 (15):3255–61. doi:10.1002/cphc.201000477.
  • Douvartzides, S. L., N. D. Charisiou, K. N. Papageridis, and M. A. Goula. 2019. Green diesel: Biomass feedstocks, production technologies, catalytic research, fuel properties and performance in compression ignition internal combustion engines. Energies 12 (5):809. doi:10.3390/en12050809.
  • Dziedzicka, A., B. Sulikowski, and M. Ruggiero-Mikołajczyk. 2016. Catalytic and physicochemical properties of modified natural clinoptilolite. Catalysis Today 259:50–58. doi:10.1016/j.cattod.2015.04.039.
  • Elaiopoulos, K., T. Perraki, and E. Grigoropoulou. 2010. Monitoring the effect of hydrothermal treatments on the structure of a natural zeolite through a combined XRD, FTIR, XRF, SEM and N2-porosimetry analysis. Microporous and Mesoporous Materials 134 (1–3):29–43. doi:10.1016/j.micromeso.2010.05.004.
  • García, J. R., M. Bertero, M. Falco, and U. Sedran. 2015. Catalytic cracking of bio-oils improved by the formation of mesopores by means of Y zeolite desilication. Applied Catalysis. A, General 503:1–8. doi:10.1016/j.apcata.2014.11.005.
  • Golubev, I. S., P. P. Dik, M. O. Kazakov, V. Y. Pereyma, O. V. Klimov, M. Y. Smirnova, I. P. Prosvirin, E. Y. Gerasimov, D. O. Kondrashev, V. A. Golovachev, et al. 2021. The effect of Si/Al ratio of zeolite Y in NiW catalyst for second stage hydrocracking. Catalysis Today 378 December 2020:65–74. doi:10.1016/j.cattod.2021.01.014.
  • Graça, I., and D. Chadwick. 2020. NH4-exchanged zeolites: Unexpected catalysts for cyclohexane selective oxidation. Microporous and Mesoporous Materials 294:109873. doi:10.1016/j.micromeso.2019.109873.
  • Jeon, K. W., H. R. Park, Y. L. Lee, J. E. Kim, W. J. Jang, J. O. Shim, and H. S. Roh. 2022. Deoxygenation of non-edible fatty acid for green diesel production: Effect of metal loading amount over Ni/MgO–Al2O3 on the catalytic performance and reaction pathway. Fuel 311 (July 2021):122488. doi:10.1016/j.fuel.2021.122488.
  • Kadja, G. T. M., V. A. Fabiani, M. H. Aziz, A. T. N. Fajar, A. Prasetyo, V. Suendo, E. P. Ng, and R. R. Mukti. 2017. The effect of structural properties of natural silica precursors in the mesoporogen-free synthesis of hierarchical ZSM-5 below 100 °C. Advanced Powder Technology 28 (2):443–52. doi:10.1016/j.apt.2016.10.017.
  • Kadja, G. T. M., I. R. Kadir, A. T. N. Fajar, V. Suendo, and R. R. Mukti. 2020a. Revisiting the seed-assisted synthesis of zeolites without organic structure-directing agents: Insights from the CHA case. RSC Advances 10 (9):5304–15. doi:10.1039/c9ra10825d.
  • Kadja, G. T. M., T. R. Suprianti, M. M. Ilmi, M. Khalil, R. R. Mukti, and Subagjo. 2020b. Sequential mechanochemical and recrystallization methods for synthesizing hierarchically porous ZSM-5 zeolites. Microporous and Mesoporous Materials 308 (10):110550. doi:10.1016/j.micromeso.2020.110550.
  • Lanzafame, P., K. Barbera, G. Papanikolaou, S. Perathoner, G. Centi, M. Migliori, E. Catizzone, and G. Giordano. 2017. Comparison of H+ and NH4+ forms of zeolites as acid catalysts for HMF etherification. Catalysis Today 304 (May 2017):97–102. doi:10.1016/j.cattod.2017.08.004.
  • Lanzafame, P., G. Papanikolaou, K. Barbera, G. Centi, and S. Perathoner. 2019. Etherification of HMF to biodiesel additives: the role of NH4+ confinement in beta zeolites. Journal of Energy Chemistry 36:114–21. doi:10.1016/j.jechem.2019.07.009.
  • Lanzafame, P., G. Papanikolaou, S. Perathoner, G. Centi, G. Giordano, and M. Migliori. 2020. Weakly acidic zeolites: A review on uses and relationship between nature of the active sites and catalytic behaviour. Microporous and Mesoporous Materials 300 (January):110157. doi:10.1016/j.micromeso.2020.110157.
  • Lestari, W. W., Irwinsyah, T. E. Saraswati, Y. K. Krisnandi, U. S. F. Arrozi, E. Heraldy, and G. T. M. Kadja. 2019. Composite material consisting of HKUST-1 and indonesian activated natural zeolite and its application in CO2 capture. Open Chemistry 17 (1):1279–87. doi:10.1515/chem-2019-0136.
  • Lestari, W. W., L. Yunita, T. E. Saraswati, E. Heraldy, M. A. Khafidhin, Y. K. Krisnandi, U. S. F. Arrozi, and G. T. M. Kadja. 2021. Fabrication of composite materials MIL-100(Fe)/indonesian activated natural zeolite as enhanced CO2 capture material. Chemical Papers 75 (7):3253–63. doi:10.1007/s11696-021-01558-2.
  • Li, S., A. Zheng, Y. Su, H. Zhang, L. Chen, J. Yang, C. Ye, and F. Deng. 2007. Brønsted/lewis acid synergy in dealuminated HY zeolite: A combined solid-state NMR and theoretical calculation study. Journal of the American Chemical Society 129 (36):11161–71. doi:10.1021/ja072767y.
  • Liang, K. C., F. M. Yeh, C. G. Wu, and H. M. Lee. 2015. Gasoline production by dehydration of dimethyl ether with NH4-ZSM-5 catalyst. Energy Procedia 75:554–59. doi:10.1016/j.egypro.2015.07.452.
  • Liu, X., J. Shi, G. Yang, J. Zhou, C. Wang, J. Teng, Y. Wang, and Z. Xie. 2021. A diffusion anisotropy descriptor links morphology effects of H-ZSM-5 zeolites to their catalytic cracking performance. Communications Chemistry 4:107. doi:10.1038/s42004-021-00543-w.
  • Lycourghiotis, S., E. Kordouli, L. Sygellou, K. Bourikas, and C. Kordulis. 2019. Nickel catalysts supported on palygorskite for transformation of waste cooking oils into green diesel. Applied Catalysis. B, Environmental 259 (February):118059. doi:10.1016/j.apcatb.2019.118059.
  • Lycourghiotis, S., E. Kordouli, J. Zafeiropoulos, C. Kordulis, and K. Bourikas. 2022. Mineral montmorillonite valorization by developing Ni and Mo–Ni catalysts for third-generation green diesel production. Molecules 27 (3):643. doi:10.3390/molecules27030643.
  • Mahdia, H. I., A. Bazargan, G. McKay, N. I. W. Azelee, and L. Meili. 2021. Catalytic deoxygenation of palm oil and its residue in green diesel production: a current technological review. Chemical Engineering Research & Design 174:158–87. doi:10.1016/j.cherd.2021.07.009.
  • Mardiana, S., N. J. Azhari, T. Ilmi, and G. T. M. Kadja. 2022. Hierarchical zeolite for biomass conversion to biofuel: A review. Fuel 309 September 2021:122119. doi:10.1016/j.fuel.2021.122119.
  • McPherson, A. 2008. Electron density, refinement, and difference fourier maps. In Alexander McPherson, editor. Introduction to Macromolecular Crystallography, 211–37. Second Edi: John Wiley & Sons, Inc.
  • Meng, X., Z. Lian, X. Wang, L. Shi, and N. Liu. 2020. Effect of dealumination of HZSM-5 by acid treatment on catalytic properties in non-hydrocracking of diesel. Fuel 270 December 2019:117426. doi:10.1016/j.fuel.2020.117426.
  • Nasser, G., T. Kurniawan, K. Miyake, A. Galadima, Y. Hirota, N. Nishiyama, and O. Muraza. 2016. Dimethyl ether to olefins over dealuminated mordenite (MOR) zeolites derived from natural minerals. Journal of Natural Gas Science and Engineering 28:566–71. doi:10.1016/j.jngse.2015.12.032.
  • Nasser, G. A., T. Kurniawan, T. Tago, I. A. Bakare, T. Taniguchi, Y. Nakasaka, T. Masuda, and O. Muraza. 2015. Cracking of n-hexane over hierarchical MOR zeolites derived from natural minerals. Journal of the Taiwan Institute of Chemical Engineers 61:20–25. doi:10.1016/j.jtice.2015.11.025.
  • Nikolopoulos, N., R. G. Geitenbeek, G. T. Whiting, and B. M. Weckhuysen. 2021. Unravelling the effect of impurities on the methanol-to-olefins process in waste-derived zeolites ZSM-5. Journal of Catalysis 396:136–47. doi:10.1016/j.jcat.2021.02.015.
  • Oenema, J., R. A. van Alst, M. J. Meijerink, J. Zečević, and K. P. de Jong. 2020. The influence of residual chlorine on Pt/Zeolite Y/γ-Al2O3 composite catalysts: acidity and performance. Applied Catalysis. A, General 605:117815. doi:10.1016/j.apcata.2020.117815.
  • Papageridis, K. N., N. D. Charisiou, S. L. Douvartzides, V. Sebastian, S. J. Hinder, M. A. Baker, S. AlKhoori, K. Polychronopoulou, and M. A. Goula. 2020. Effect of operating parameters on the selective catalytic deoxygenation of palm oil to produce renewable diesel over Ni supported on Al2O3, ZrO2 and SiO2 catalysts. Fuel Processing Technology 209:106547. doi:10.1016/j.fuproc.2020.106547.
  • Putra, R., W. W. Lestari, F. R. Wibowo, and B. H. Susanto. 2018. Fe/indonesian natural zeolite as hydrodeoxygenation catalyst in green diesel production from palm Oil. Bulletin of Chemical Reaction Engineering & Catalysis 13 (2):245–55. doi:10.9767/bcrec.13.2.1382.245-255.
  • Ravi, M., V. L. Sushkevich, and J. A. van Bokhoven. 2021. On the location of Lewis acidic aluminum in zeolite mordenite and the role of framework-associated aluminum in mediating the switch between Brønsted and lewis acidity. Chemical Science 12:4094–103. doi:10.1039/d0sc06130a.
  • Ren, X., L. Xiao, R. Qu, S. Liu, D. Ye, H. Song, W. Wu, C. Zheng, X. Wu, and X. Gao. 2018. Synthesis and characterization of a single phase zeolite A using coal fly ash. RSC Advances 8 (73):42200–09. doi:10.1039/c8ra09215j.
  • Rietveld, H. M. 1969. A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography 2 (2):65–71. doi:10.1107/s0021889869006558.
  • Rostami, M. S., H. A. Dabbagh, and S. Rostami. 2021. Investigation of the mechanism and effect of temperature on the reaction of conversion of oxygenated compounds to gasoline over NH4-ZSM-5. Journal of the Iranian Chemical Society 19:121–30. doi:10.1007/s13738-021-02291-z.
  • Schallmoser, S., T. Ikuno, M. F. Wagenhofer, R. Kolvenbach, G. L. Haller, M. Sanchez-Sanchez, and J. A. Lercher. 2014. Impact of the local environment of Brønsted acid sites in ZSM-5 on the catalytic activity in n-pentane cracking. Journal of Catalysis 316:93–102. doi:10.1016/j.jcat.2014.05.004.
  • Silaghi, M. C., C. Chizallet, and P. Raybaud. 2014. Challenges on molecular aspects of dealumination and desilication of zeolites. Microporous and Mesoporous Materials 191:82–96. doi:10.1016/j.micromeso.2014.02.040.
  • Sousa, F. P., L. N. Silva, D. B. de Rezende, L. C. A. de Oliveira, and V. M. D. Pasa. 2018. Simultaneous deoxygenation, cracking and isomerization of palm kernel oil and palm olein over beta zeolite to produce biogasoline, green diesel and biojet-fuel. Fuel 223:149–56. doi:10.1016/j.fuel.2018.03.020.
  • Tariq, M., S. Ali, F. Ahmad, M. Ahmad, M. Zafar, N. Khalid, and M. A. Khan. 2011. Identification, FT-IR, NMR (1H and 13C) and GC/MS studies of fatty acid methyl esters in biodiesel from rocket seed oil. Fuel Processing Technology 92 (3):336–41. doi:10.1016/j.fuproc.2010.09.025.
  • Vakros, J. 2018. Biochars and their use as transesterification catalysts for biodiesel production: A short review. Catalysts 8 (11):562. doi:10.3390/catal8110562.
  • Wahono, S. K., J. Stalin, J. Addai-Mensah, W. Skinner, A. Vinu, and K. Vasilev. 2020. Physico-chemical modification of natural mordenite-clinoptilolite zeolites and their enhanced CO2 adsorption capacity. Microporous and Mesoporous Materials 294 November 2019:109871. doi:10.1016/j.micromeso.2019.109871.
  • Wang, C., H. Guo, S. Leng, J. Yu, K. Feng, L. Cao, and J. Huang. 2021. Regulation of hydrophilicity/hydrophobicity of aluminosilicate zeolites: A review. Critical Reviews in Solid State and Materials Sciences 46 (4):330–48. doi:10.1080/10408436.2020.1819198.
  • Wardani, M. K., G. T. M. Kadja, A. T. N. Fajar, Subagjo, I. G. B. N. Makertihartha, M. L. Gunawan, V. Suendo, and R. R. Mukti. 2019. Highly crystalline mesoporous SSZ-13 zeolite obtained via controlled post-synthetic treatment. RSC Advances 9 (1):77–86. doi:10.1039/C8RA08979E.
  • Whiteside, A., S. S. Xantheas, and M. Gutowski. 2011. Is electronegativity a useful descriptor for the Pseudo-Alkali metal NH4? Chemistry - A European Journal 17 (47):13197–205. doi:10.1002/chem.201101949.
  • Yan, P., E. Kennedy, and M. Stockenhuber. 2021. Natural zeolite supported Ni catalysts for hydrodeoxygenation of anisole. Green Chemistry 23 (13):4673–84. doi:10.1039/d0gc04377j.
  • Zecchina, A., L. Marchese, S. Bordiga, C. Paze, and E. Gianotti. 1997. Vibrational spectroscopy of NH4+ ions in zeolitic materials: an IR study. Journal of Physical Chemistry B 101 (48):10128–35. doi:10.1021/jp9717554.
  • Zhao, X., L. Wei, S. Cheng, Y. Huang, Y. Yu, and J. Julson. 2015. Catalytic cracking of camelina oil for hydrocarbon biofuel over ZSM-5-Zn catalyst. Fuel Processing Technology 139:117–26. doi:10.1016/j.fuproc.2015.07.033.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.