130
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Introducing a new method of using nanocomposites for preventing asphaltene aggregation during real static and dynamic natural depletion tests

ORCID Icon, ORCID Icon & ORCID Icon
Pages 7499-7513 | Received 03 Jun 2022, Accepted 01 Aug 2022, Published online: 21 Aug 2022

References

  • Aghabeygi, S., and M. Khademi-Shamami. 2018. ZnO/ZrO2 nanocomposite: Sonosynthesis, characterization and its application for wastewater treatment. Ultrasonics Sonochemistry 41:458–65. doi:10.1016/j.ultsonch.2017.09.020.
  • AL-Hammadi, S. A., A. A. Al-Absi, O. A. Bin-Dahman, and T. A. Saleh. 2018. Poly(trimesoyl chloride-melamine) grafted on palygorskite for simultaneous ultra-trace removal of methylene blue and toxic metals. Journal of Environmental Management 226:358–64. doi:10.1016/j.jenvman.2018.08.025.
  • Alswata, A. A., M. B. Ahmad, N. M. Al-Hada, H. M. Kamari, M. Z. B. Hussein, and N. A. Ibrahim. 2017. Preparation of zeolite/zinc oxide nanocomposites for toxic metals removal from water. Results in Physics 7:723–31. doi:10.1016/j.rinp.2017.01.036.
  • Arias-Madrid, D., O. E. Medina, J. Gallego, S. Acevedo, A. A. Correa-Espinal, F. B. Cort´es, and C. A. Franco. 2020. NiO, Fe2O3, and MoO3 supported over SiO2 nanocatalysts for asphaltene adsorption and catalytic decomposition: Optimization through a simplex–centroid mixture design of experiments. Catalysts 10 (5):569. doi:10.3390/catal10050569.
  • ASTM D6560-17. 2005. Standard test method for determination of asphaltenes (heptane insolubles) in crude petroleum and petroleum products, Vol. 2017. West Conshohocken, PA:ASTM International. Accessed 26 July 2022. www.astm.org.
  • Chen, W., P. Vashistha, A. Yen, N. Joshi, Y. Kapoor, and R. L. Hartman. 2018. Asphaltenes dissolution mechanism study by in situ Raman characterization of a packed-bed microreactor with HZSM-5 aluminosilicates. Energy & Fuels 32 (12):12205–17. doi:10.1021/acs.energyfuels.8b02854.
  • El-Khaiary, M. I. 2008. Least-squares regression of adsorption equilibrium data: Comparing the options. Journal of Hazardous Materials 158 (1):73–87. doi:10.1016/j.jhazmat.2008.01.052.
  • Fakher, S., M. Ahdaya, M. Elturki, and A. Imqam. 2020. Critical review of asphaltene properties and factors impacting its stability in crude oil. Journal of Petroleum Exploration and Production Technology 10 (3):1183–200. doi:10.1007/s13202-019-00811-5.
  • Hassanpour, S., M. R. Malayeri, and M. Riazi. 2018. Asphaltene precipitation during injection of CO2 gas into a synthetic oil in the presence of Fe3O4 and TiO2 nanoparticles. Journal of Chemical and Engineering Data 63 (5):1266–74. doi:10.1021/acs.jced.7b00903.
  • Hemmati-Sarapardeh, A., R. Alipour-Yeganeh-Marand, A. Naseri, A. Safiabadi, F. Gharagheizi, P. Ilani- Kashkouli, and A. H. Mohammadi. 2013. Asphaltene precipitation due to natural depletion of reservoir: Determination using a SARA fraction based intelligent model. Fluid Phase Equilibria 354:177–84. doi:10.1016/j.fluid.2013.06.005.
  • Hosseini, S. A., R. Hagjoo, and M. Baninaam. 2019. Adsorption of asphaltenes onto CaO, Co3O4, Fe3O4 and ZnO supported on 13X zeolite - An isothermal study. Petroleum Science and Technology 37 (23):2330–37. doi:10.1080/10916466.2018.1522336.
  • Hosseinpour, N., A. A. Khodadadi, A. Bahramian, and Y. Mortazavi. 2013. Asphaltene adsorption onto acidic/basic metal oxide nanoparticles toward in situ upgrading of reservoir oils by nanotechnology. Langmuir 29 (46):14135–46. doi:10.1021/la402979h.
  • Hwang, K. S., Y. S. Jeon, S. B. Kim, C. K. Kim, J. S. Oh, J.-H. An, and B.-H. Kim. 2003. Ca-Doped ZrO2 thin films deposited by using the spin-coating pyrolysis process with a metal naphthenate precursor. Journal of the Korean Physical Society 43 (5):754–57. doi:10.3938/jkps.43.754.
  • Kashefi, S., M. N. Lotfollahi, and A. Shahrabadi. 2018. Investigation of AsphalteneAdsorption onto zeolite beta nanoparticles to reduce asphaltene deposition in a silica sand pack. Oil & Gas Science and Technology - Rev. IFP Energies Nouvelles 73:2–15. doi:10.2516/ogst/2017038.
  • Kazemzadeh, Y., M. R. Malayeri, M. Riazi, and R. Parsaei. 2015. Impact of Fe3O4 nanoparticles on asphaltene precipitation during CO2 injection. Journal of Natural Gas Science and Engineering 22:227–34. doi:10.1016/j.jngse.2014.11.033.
  • Khamehchi, E., M. Shakiba, and M. S. Ardakani. 2018. A novel approach to oil production optimization considering asphaltene precipitation: A case study on one of the Iranian south oil wells. Journal of Petroleum Exploration and Production Technology 8 (4):1303. doi:10.1007/s13202-017-0409-0.
  • Khormali, A., A. R. Sharifov, and D. I. Torba. 2018. Experimental and modeling study of asphaltene adsorption onto the reservoir rocks. Petroleum Science and Technology 36 (18):1482–89. doi:10.1080/10916466.2018.1496116.
  • Kumar, S., V. Sharma, K. Bhattacharyya, and V. Krishnan. 2016. Synergetic effect of MoS 2 –RGO doping to enhance the photocatalytic performance of ZnO nanoparticles. New Journal of Chemistry 40 (6):5185–97. doi:10.1039/C5NJ03595C.
  • López, D., L. J. Giraldo, E. F. Lucas, M. Riazi, C. A. Franco, and F. B. Cortes. 2020b. Cardanol /SiO2 nanocomposites for inhibition of formation damage by asphaltene precipitation/deposition in light crude oil reservoirs. part II: nanocomposite evaluation and coreflooding test. Energy & Fuels 34 (6):7048–57. doi:10.1021/acs.energyfuels.0c01114.
  • López, D., J. E. Jaramillo, E. F. Lucas, M. Riazi, S. H. Lopera, C. A. Franco, and F. B. Cortés. 2020a. Cardanol/SiO2 nanocomposites for inhibition of formation damage by asphaltene precipitation/deposition in light crude oil reservoirs. part I: Novel nanocomposite design based on SiO2–cardanol interactions. ACS omega 5 (43):27800–10. doi:10.1021/acsomega.0c02722.
  • Madhi, M., A. Bemani, A. Daryasafar, and M. R. Khosravi Nikou. 2017. Experimental and modeling studies of the effects of different nanoparticles on asphaltene adsorption. Petroleum Science and Technology 35 (3):242–48. doi:10.1080/10916466.2016.1255641.
  • Mansouri, M., A. Hosseinvand, T. Kikhavani, and N. Setareshenas. 2020. Synthesis and characterization of N-doped ZnO-γAl2O3 nanoparticles for photo-catalytic application. International Journal of Chemical Reactor Engineering 18:20190116. doi:10.1515/ijcre-2019-0116.
  • Mohammadi, M., M. Sedighi, and M. Hemati. 2019. Removal of petroleum asphaltenes by improved activity of NiO nanoparticles supported on green AlPO-5 zeolite: Process optimization and adsorption isotherm. Petroleum 6 (2):182–88. 10.1016/j.petlm.2019.06.004.
  • Nassar, N. N. 2010. Asphaltene adsorption onto alumina nanoparticles: Kinetics and thermodynamic studies. Energy & Fuels 24 (8):4116–22. doi:10.1021/ef100458g.
  • Nassar, N. N., A. Hassan, and P. Pereira Almao. 2011. Thermogravimetric studies oncatalytic effect of metal oxide nanoparticles on asphaltene pyrolysis under inert conditions. Thermal Analysis and Calorimetry 110:1327–32. doi:10.1007/s10973-011-2045-0.
  • Nodehi, A., H. Atashi, and M. Mansouri. 2019. Improved photocatalytic degradation of reactive blue 81 using NiO-doped ZnO–ZrO2 nanoparticles. Journal of Dispersion Science and Technology 40:766–76. doi:10.1080/01932691.2018.1499522.
  • Parsaei, R., Y. Kazemzadeh, and M. Riazi. 2020. Study of asphaltene precipitation during CO2. Injection into Oil Reservoirs in the Presence of Iron Oxide Nanoparticles by Interfacial Tension and Bond Number Measurements. ACS Omega 5 (14):7877–84.
  • Razipour, M., M. Samipour Giri, and N. Majidian. 2020. Application of surfactants on asphaltene stability in heavy oil by interfacial tension approach. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–13. doi:10.1080/15567036.2020.1752332.
  • Saleh, T. A. 2015a. Isotherm, kinetic, and thermodynamic studies on Hg(II) adsorption from aqueous solution by silica- multiwall carbon nanotubes. Environmental Science and Pollution Research 22 (21):16721–31. doi:10.1007/s11356-015-4866-z.
  • Saleh, T. A. 2015b. Mercury sorption by silica/carbon nanotubes and silica/activated carbon: A comparison study. Journal of Water Supply: Research and Technology-Aqua 64 (8):892–903. doi:10.2166/aqua.2015.050.
  • Senobari, S., and A. Nezamzadeh-Ejhieh. 2018. A comprehensive study on the enhanced photocatalytic activity of CuO-NiO nanoparticles: Designing the experiments. Journal of Molecular Liquids 261:208–17. doi:10.1016/j.molliq.2018.04.028.
  • Sultana, S., M. Z. Khan, M. Muneer, M. Muneer, and M. Muneer. 2013. Electrical, thermal, photocatalytic and antibacterial studies of metallic oxide nanocomposite doped polyaniline. Journal of Materials Science & Technology 29 (9):795–800. doi:10.1016/j.jmst.2013.06.001.
  • Syunyaev, R. Z., R. M. Balabin, I. S. Akhatov, and J. O. Safieva. 2009. Adsorption of petroleum asphaltenes onto reservoir rock sands studied by near-infrared (NIR) spectroscopy. Energy & Fuels 23 (3):1230–36. doi:10.1021/ef8006068.
  • Tazikeh, S., J. Sayyad Amin, and S. Zendehboudi. 2020. Experimental study of asphaltene precipitation and metastable zone in the presence of polythiophene-coated Fe3O4 nanoparticles. Journal of Molecular Liquids 301:112254. doi:10.1016/j.molliq.2019.112254.
  • Wu, H., C. Wang, J. Kwon, Y. Choi, and J. Lee. 2021. Synthesis of 2D and 3D hierarchical β-FeOOH nanoparticles consisted of ultrathin nanowires for efficient hexavalent chromium removal. Applied Surface Science 543:148823. doi:10.1016/j.apsusc.2020.148823.
  • Zafar, M. N., Q. Dar, F. Nawaz, M. N. Zafar, M. Iqbal, and M. F. Nazar. 2019. Effective adsorptive removal of azo dyes over spherical ZnO nanoparticles. Journal of Materials Research and Technology 8 (1):713–25. doi:10.1016/j.jmrt.2018.06.002.
  • Zekri, A. Y., and A. S. Shedid. 2004. The effect of fracture characteristics on reduction of permeability by asphaltene precipitation in carbonate formation. Journal of Petroleum Science and Engineering 42 (2–4):171–82. doi:10.1016/j.petrol.2003.12.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.