144
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Experimental investigation of performance, emission and combustion characteristics of a CI engine fuelled by blends of waste plastic oil with diesel

, & ORCID Icon
Pages 7693-7708 | Received 29 Dec 2021, Accepted 10 Aug 2022, Published online: 26 Aug 2022

References

  • Ağbulut, Ü., S. Sarıdemir, and S. Albayrak. 2019a. Experimental investigation of combustion, performance and emission characteristics of a diesel engine fuelled with diesel–biodiesel–alcohol blends. Journal of the Brazilian Society of Mechanical Sciences and Engineering 41 (9):389. doi:10.1007/s40430-019-1891-8.
  • Ağbulut, Ü., S. Sarıdemir, and S. Albayrak. 2019b. Experimental investigation of combustion, performance and emission characteristics of a diesel engine fuelled with diesel–biodiesel–alcohol blends. Journal of the Brazilian Society of Mechanical Sciences and Engineering 41 (9):389. doi:10.1007/s40430-019-1891-8.
  • Bezergianni, S. A., G. Dimitriadis, C. Faussone, and D. Karonis. 2017. Alternative diesel from waste plastics. Energies 10 (11):1750. doi:10.3390/en10111750.
  • Chiatti, G., O. Chiavola, and F. Palmieri. 2018. Impact of waste cooking oil in biodiesel blends on particle size distributions from a city-car engine. Journal of the Energy Institute 91 (2):262–69. doi:10.1016/j.joei.2016.11.009.
  • Dimitriou, P., T. Tsujimura, and Y. Suzuki. 2019. Adopting biodiesel as an indirect way to reduce the NOx emission of a hydrogen fumigated dual-fuel engine. Fuel 244:324–34. doi:10.1016/j.fuel.2019.02.010.
  • Dinesha, P., S. Kumar, and M. A. Rosen. 2019. Combined effects of water emulsion and diethyl ether additive on combustion performance and emissions of a compression ignition engine using biodiesel blends. Energy 179:928–37. doi:10.1016/j.energy.2019.05.071.
  • Erdoğan, S., M. K. Balki, S. Aydın, and C. Sayin. 2019. The best fuel selection with hybrid multiple-criteria decision making approaches in a CI engine fueled with their blends and pure biodiesels produced from different sources. Renewable Energy 134:653–68. doi:10.1016/j.renene.2018.11.060.
  • Hossain, A. K. 2013. Experimental investigation of performance, emission and combustion characteristics of an indirect injection multi-cylinder CI engine fuelled by blends of de-inking sludge pyrolysis oil with biodiesel. Fuel 105:135–42. doi:10.1016/j.fuel.2012.05.007.
  • Kanth, S., and S. Debbarma. 2021. Comparative performance analysis of diesel engine fuelled with hydrogen enriched edible and non-edible biodiesel. International Journal of Hydrogen Energy 46 (17):10478–93. doi:10.1016/j.ijhydene.2020.10.173.
  • Karagöz, M., Ü. Ağbulut, and S. Sarıdemir. 2020. Waste to energy: Production of waste tire pyrolysis oil and comprehensive analysis of its usability in diesel engines. Fuel 275:117844. doi:10.1016/j.fuel.2020.117844.
  • Krishania, N., U. Rajak, T.N. Verma, A.B. Kumar, and A. Pugazhendhi. 2020. Prediction of the combustion, performance and exhaust emissions of mixed diesel- Jatropha, tyre pyrolysis oil and microalgae blends in diesel engine. Fuel 278:118252. doi:10.1016/j.fuel.2020.118252.
  • Leite, D. 2019. Emissions and performance of a diesel engine affected by soybean, linseed, and crambe biodiesel. Industrial Crops and Products 130:267–72. doi:10.1016/j.indcrop.2018.12.092.
  • Meng, Q., X. Lin, Y. Zhai, L. Zhang, P. Zhang, and L. Sheng. 2020. A theoretical investigation on Bell-Evans-Polanyi correlations for hydrogen abstraction reactions of large biodiesel molecules by H and OH radicals. Combustion and Flame 214:394–406. doi:10.1016/j.combustflame.2020.01.005.
  • Mensah, A. D., D. Mei, L. Zuo, Q. Zhang, and J. Wang. 2019. A review on partial hydrogenation of biodiesel and its influence on fuel properties. Fuel 251:660–68. doi:10.1016/j.fuel.2019.04.036.
  • Miandad, R., M. A. Barakat, A. S. Aburiazaiza, M. Rehan, I. M. I. Ismail, and A. S. Nizami. 2017. Effect of plastic waste types on pyrolysis liquid oil. International Biodeterioration & Biodegradation 119:239–52. doi:10.1016/j.ibiod.2016.09.017.
  • Nabi, M. N., M. G. Rasul, and R. J. Brown. 2019. Influence of diglyme addition to diesel-biodiesel blends on notable reductions of particulate matter and number emissions. Fuel 253:811–22. doi:10.1016/j.fuel.2019.05.072.
  • Nanthagopal, K., B. Ashok, B. Saravanan, S. M. Korah, and S. Chandra. 2018. Effect of next generation higher alcohols and Calophyllum inophyllum methyl ester blends in diesel engine. Energy Conversion and Management 180:50–63. doi:10.1016/j.jclepro.2018.01.167.
  • Pandey, J. K., and G. N. Kumar. 2022.Effect of variable compression ratio and equivalence ratio on performance, combustion and emission of hydrogen port injection SI engine. Energy 239: 122468. doi:10.1016/j.energy.2021.122468.
  • Paul, A., R. Panua, and D. Debroy. 2017. An experimental study of combustion, performance, exergy and emission characteristics of a CI engine fueled by diesel-ethanol-biodiesel blends. Energy 141:839–52. doi:10.1016/j.energy.2017.09.137.
  • Qi, D. H., K. Yang, D. Zhang, and B. Chen. 2017. Combustion and emission characteristics of diesel-tung oil-ethanol blended fuels used in a CRDI diesel engine with different injection strategies. Applied Thermal Engineering 111:927–35. doi:10.1016/j.applthermaleng.2016.09.157.
  • Rajak, U., P. Nashine, P. K. Chaurasiya, M. Verma, T. R. Kota, and T. N. Verma. 2020b. Financial assessment, performance and emission analysis of Moringa oleifera and Jatropha curcas methyl ester fuel blends in a single-cylinder diesel engine. Energy Conversion and Management 224:113362. doi:10.1016/j.enconman.2020.113362.
  • Rajak, U., P. Nashine, and T. N. Verma. 2019b. Experimental study on spray characteristics of biodiesel-diesel fuels blends in a constant volume chamber. Journal of Engineering and Applied Sciences 5 (2):1–12. doi:10.5455/jecas.2018110101.
  • Rajak, U., P. Nashine, and T. N. Verma. 2020a. Effect of spirulina microalgae biodiesel enriched with diesel fuel on performance and emission characteristics of CI engine. Fuel 268:117305. doi:10.1016/j.fuel.2020.117305.
  • Rajak, U., P. Nashine, T. N. Verma, and A. Pugazhendhi. 2019a. Alternating the environmental benefits of Aegle-diesel blends used in compression ignition. Fuel 256:115835. doi:10.1016/j.fuel.2019.115835.
  • Sarıdemirs, G., A. Ü. Ae, and F. Bakan. 2020. Investigating the role of fuel injection pressure change on performance characteristics of a DI-CI engine fuelled with methyl ester. Fuel 271:117634. doi:10.1016/j.fuel.2020.117634.
  • Shanmugam, R., D. Dillikannan, G. Kaliyaperumal, M. Victor De Poures, and Rajesh Kumar Babu. 2021. A comprehensive study on the effects of 1-decanol, compression ratio and exhaust gas recirculation on diesel engine characteristics powered with low density polyethylene oil. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 43 (23):3064–81. doi:10.1080/15567036.2020.1833112.
  • Shrivastava, P., and T. N. Verma. 2020. Effect of fuel injection pressure on the characteristics of CI engine fuelled with biodiesel from Roselle oil. Fuel 265:117005. doi:10.1016/j.fuel.2019.117005.
  • Singh, T. S., U. Rajak, A. Dasore, M. Muthukumar, and T. N. Verma. 2021. Performance and ecological parameters of a diesel engine fueled with diesel and plastic pyrolyzed oil (PPO) at variable working parameters. Environmental Technology & Innovation 22:101491. doi:10.1016/j.eti.2021.101491.
  • Singh, T. S., U. Rajak, O. D. Samuel, P. K. Chaurasiya, K. Natarajan, T. N. Verma, and P. Nashine. 2020. Optimization of performance and emission parameters of direct injection diesel engine fuelled with microalgae Spirulina (L.)-response surface methodology and full factorial method approach. Fuel 285:119103. doi:10.1016/j.fuel.2020.119103.
  • Singh, R. K., and B. Ruj. 2016. Time and temperature depended fuel gas generation from pyrolysis of real world municipal plastic waste. Fuel 174:164–71. doi:10.1016/j.fuel.2016.01.049.
  • Sui, M., Y. Chen, F. Li, W. Wang, and J. Shen. 2021. Study on the mechanism of auto-oxidation of Jatropha biodiesel and the oxidative cleavage of CC bond. Fuel 291:120052. doi:10.1016/j.fuel.2020.120052.
  • Sukjit, E., M. Tongroon, N. Chollacoop, Y. Yoshimura, P. Poapongsakorn, and M. Lapuerta. 2019. Improvement of the tribological behaviour of palm biodiesel via partial hydrogenation of unsaturated fatty acid methyl esters. Wear 426-427:813–18. doi:10.1016/j.wear.2018.12.017.
  • Sundaram, S., S. Padmanaba, and P. Vijayabalan. 2021.Pyrolysis of disposed plastic food containers and its potential in diesel engine by doping with nano particle at optimum injection timing. Sustainable Energy Technologies and Assessments 47: 101537. doi:10.1016/j.seta.2021.101537.
  • Syamsiro, M. 2014. Fuel oil production from municipal plastic wastes in sequential pyrolysis and catalytic reforming reactors. Energy Procedia 47:180–88. doi:10.1016/j.egypro.2014.01.212.
  • Tan, Y. H., M. O. Abdullah, J. Kansedo, N. M. Mubarak, Y. S. Chan, and C. H. Nolasco. 2019. Biodiesel production from used cooking oil using green solid catalyst derived from calcined fusion waste chicken and fish bones. Renewable Energy 139:696–706. doi:10.1016/j.renene.2019.02.110.
  • Telgane, V., N. K. Kumar, and S. Godiganur 2022. Dairy scum methyl ester production and its performance testing on a CI engine at different compression ratios. Materials Today: Proceedings 54:270–73. doi:10.1016/j.matpr.2021.09.155.
  • Tuan, A., A. M. Foley, S. Ni, V. V. Pham, and X. Phuong. 2022. Energy-Related approach for reduction of CO2 emissions: A critical strategy on the port-to-ship pathway PM SC. Journal of Cleaner Production 355(February). doi:10.1016/j.jclepro.2022.131772.
  • Tuan, A., P. Sabev, S. Ni, R. Luque, K. H. Ng, and V. V. Pham. 2022. Perspective review on Municipal solid waste-to-energy route: Characteristics, management strategy, and role in circular economy. 359 (May). doi:10.1016/j.jclepro.2022.131897.
  • Tuan, A., A. Tuan, and V. V. Pham 2019. A core correlation of spray characteristics, deposit formation, and combustion of a high-speed diesel engine fueled with Jatropha oil and diesel fuel. Fuel 244:159–75. doi:10.1016/j.fuel.2019.02.009.
  • Tuan, A., A. Tuan, and V. V. Pham 2019. Impact of Jatropha Oil on Engine Performance, Emission Characteristics, Deposit Formation, and Lubricating Oil Degradation. Combustion Science and Technology 191 (3):504–19. doi:10.1080/00102202.2018.1504292.
  • United NEP. 2009. Converting waste plastics into a resource compendium of technologies , 1–51. United Nations Environment Program.
  • Velmurugan, R., J. Mayakrishnan, S.S. Induja, S. Raja, and S. R. Nandagopal. 2019. Comprehensive study on the Effect of CuO nano fluids prepared using one-step chemical synthesis method on the behavior of waste cooking oil biodiesel in compression ignition engine. Journal of Thermal Science and Engineering Applications 11 (4):1–29. doi:10.1115/1.4041878.
  • Venkatesan, H., G. J. John, and S. Sivamani. 2019. Impact of oxygenated cottonseed biodiesel on combustion, performance and emission parameters in a direct injection CI engine. International Journal of Ambient Energy 40 (2):158–69. doi:10.1080/01430750.2017.1381154.
  • Venkatesan, H., S. Sivamani, K. Bhutoria, and H. H. Vora 2018. Experimental study on combustion and performance characteristics in a DI CI engine fuelled with blends of waste plastic oil. Alexandria Engineering Journal 57 (4):2257–63. doi:10.1016/j.aej.2017.09.001.
  • Vijaya, P., B. Ashok, M. Senthil, R. Vignesh, J. P. Bhasker, and A. N. Kumar. 2022.Evaluation of performance, emissions and combustion attributes of CI engine using palmyra biodiesel blend with distinct compression ratios, EGR rates and nano-particles. Fuel 321: 124092. doi:10.1016/j.fuel.2022.124092.
  • Wang, S., V. Karthickeyan, and A. K. EsakkimuthuS. 2020. Experimental investigation of high alcohol low viscous renewable fuel in DI diesel engine. Environmental Science and Pollution Research 1–15. doi:10.1007/s11356-020-08298-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.