122
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Responses of pore structure parameters and functional group compositions of coals to irradiation power: implication to coalbed methane production via microwave irradiation

, , , , &
Pages 7709-7725 | Received 17 Jun 2022, Accepted 11 Aug 2022, Published online: 26 Aug 2022

References

  • Al-Harahsheh, M., S. Kingman, A. Saeid, J. Robinson, G. Dimitrakis, and H. Alnawafleh 2009. Dielectric properties of Jordanian oil shales. Fuel Processing Technology 90:1259–64 doi:10.1016/j.fuproc.2009.06.012.
  • Avnir, D., and M. Jaroniec 1989. An isotherm equation for adsorption on fractal surfaces of heterogeneous porous materials. Langmuir 5:1431–33 doi:10.1021/la00090a032.
  • Barrett, E. P., L. G. Joyner, and P. P. Halenda 1951. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. Journal of the American Chemical Society 73:373–80 doi:10.1021/ja01151a046.
  • Brunauer, S., L. S. Deming, W. E. Deming, and E. Teller 1940. On a theory of the van der Waals adsorption of gases. Journal of the American Chemical Society 62:1723–32 doi:10.1021/ja01864a025.
  • Camelia, G., G. Sami, H. G. Edward, B. J. Halstead, and P. M. Michael 1998. Dielectric parameters relevant to microwave dielectric heating. Chemical Society reviews 27:213–23 doi:10.1039/a827213z.
  • Chen, J. H., D. T. Georgi, and H. H. Liu 2018. Electromagnetic thermal stimulation of shale reservoirs for petroleum production. Journal of Natural Gas Science & Engineering 59:183–92 doi:10.1016/j.jngse.2018.08.029.
  • Dappe, Y. J., M. A. Basanta, F. Flores, and J. Ortega 2006. Weak chemical interaction and van der Waals forces between graphene layers: A combined density functional and intermolecular perturbation theory approach. Physical Review B 74:205434. doi:10.1103/physrevb.74.205434.
  • Do, D. D. 1998. Adsorption Analysis: Equilibria and Kinetics. London: Imperial College Press.
  • Fu, X. X., Z. M. Lun, C. P. Zhao, X. Zhou, H. T. Wang, X. T. Zhou, Y. Xu, H. Zhang, and D. F. Zhang 2021. Influences of controlled microwave field irradiation on physicochemical property and methane adsorption and desorption capability of coals:Implications for coalbed methane (CBM) production. Fuel 301:121022. doi:10.1016/j.fuel.2021.121022.
  • Fu, X. X., D. F. Zhang, W. P. Jiang, Z. M. Lun, C. P. Zhao, H. T. Wang, and Y. H. Li. 2019. Influence of physicochemical properties of coals on pore morphology and methane adsorption: A perspective. Chemical Industry and Engineering Progress 38:2714–25 doi:10.16085/j.issn.1000-6613.2018-1948. In Chinese with English abstract.
  • Gathitu, B. B., W. Y. Chen, and M. Mcclure 2009. Effects of coal interaction with supercritical CO2: Physical structure. Industrial & Engineering Chemistry Research 48:5024–34 doi:10.1021/ie9000162.
  • Ge, L. C., Y. W. Zhang, Z. H. Wang, J. H. Zhou, and K. F. Cen 2013. Effects of microwave irradiation treatment on physicochemical characteristics of Chinese low-rank coals. Energy Conversion and Management 71:84–91 doi:10.1016/j.enconman.2013.03.021.
  • Groen, J. C., L. A. Peffer, and J. Pérez-Ramı́rez 2003. Pore size determination in modified micro-and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous and Mesoporous Materials 60:1–17 doi:10.1016/S1387-1811(03)00339-1.
  • He, L. L., Y. B. Melnichenko, M. Mastalerz, R. Sakurovs, A. P. Radlinski, and T. Blach 2011. Pore accessibility by methane and carbon dioxide in coal as determined by neutron scattering. Energy & Fuels 26:1975–83 doi:10.1021/ef201704t.
  • Hong, Y. D., B. Q. Lin, C. J. Zhu, and H. Li 2016. Influence of Microwave energy on fractal dimension of coal cores: Implications from nuclear magnetic resonance. Energy & Fuels 30:10253–59 doi:10.1021/acs.energyfuels.6b02133.
  • Hu, G. Z., N. Yang, G. Xu, and J. L. Xu 2018. Experimental investigation on variation of physical properties of coal samples subjected to microwave irradiation. Journal of Applied Geophysics 150:118–25 doi:10.1016/j.jappgeo.2017.12.011.
  • Huang, X., W. Chu, W. J. Sun, C. F. Jiang, Y. Y. Feng, and Y. Xue 2014. Investigation of oxygen-containing group promotion effect on CO2-coal interaction by density functional theory. Applied Surface Science 299:162–69 doi:10.1016/j.apsusc.2014.01.205.
  • Huang, J. X., G. Xu, G. Z. Hu, M. Kizil, and Z. W. Chen 2018. A coupled electromagnetic irradiation, heat and mass transfer model for microwave heating and its numerical simulation on coal. Fuel Processing Technology 177:237–45 doi:10.1016/j.fuproc.2018.04.034.
  • Huang, J. X., G. Xu, Y. P. Liang, G. Z. Hu, and P. Chang 2020. Improving coal permeability using microwave heating technology-A review. Fuel 266:16. doi:10.1016/j.fuel.2020.117022.
  • Ismail, I. M., and P. Pfeifer 1994. Fractal analysis and surface roughness of nonporous carbon fibers and carbon blacks. Langmuir 10:1532–38 doi:10.1021/la00017a035.
  • Jiang, Q., W. Chu, W. J. Sun, F. S. Liu, and Y. Xue 2012. A DFT study of methane adsorption on nitrogen-containing organic heterocycles. Acta Physico-Chimica Sinica 28:1101–06 doi:10.3866/pku.whxb201203054.
  • Jiang, P., Y. Meng, Z. Y. Lu, L. Xu, G. Yang, X. Luo, K. Q. Shi, and T. Wu 2020. Kinetic and thermodynamic investigations of CO2 gasification of coal chars prepared via conventional and microwave pyrolysis. International Journal of Coal Science & Technology 7:422–32 doi:10.1007/s40789-020-00358-5.
  • Kelemen, S. R., M. Afeworki, M. L. Gorbaty, P. J. Kwiatek, M. S. Solum, J. Z. Hu, and R. J. Pugmire 2002. XPS and N-15 NMR study of nitrogen forms in carbonaceous solids. Energy & Fuels 16:1507–15 doi:10.1021/ef0200828.
  • Kelemen, S. R., M. Afeworki, M. L. Gorbaty, M. Sansone, P. J. Kwiatek, C. C. Walters, H. Freund, and M. Siskin 2007. Direct characterization of kerogen by X-ray and solid-state 13C nuclear magnetic resonance methods. Energy & Fuels 21:1548–61 doi:10.1021/ef060321h.
  • Kelemen, S. R., M. L. Gorbaty, and P. J. Kwiatek 1994. Quantification of nitrogen forms in Argonne premium coals. Energy & Fuels 8:896–906 doi:10.1021/ef00046a013.
  • Knicker, H., P. G. Hatcher, and A. W. Scaroni 1996. A solid-state 15N NMR spectroscopic investigation of the origin of nitrogen structures in coal. International Journal of Coal Geology 32:255–78 doi:10.1016/S0166-5162(96)00040-7.
  • Kouichi, M. 2000. Mild conversion of coal for producing valuable chemicals. Fuel Processing Technology 62:119–35 doi:10.1016/S0378-3820(99)00123-X.
  • Leng, X., X. Xiong, and J. P. Zou 2014. Rapid microwave irradiation fast preparation and characterization of few-layer graphenes. Transactions of Nonferrous Metals Society of China 24:177–83 doi:10.1016/S1003-6326(14)63045-4.
  • Li, Y., S. Q. Pan, S. Z. Ning, L. Y. Shao, Z. H. Jing, and Z. S. Wang 2022a. Coal measure metallogeny: Metallogenic system and implication for resource and environment. Science China Earth Sciences. doi:10.1007/s11430-021-9920-4.
  • Li, H., S. L. Shi, B. Q. Lin, J. X. Lu, Q. Ye, Y. Lu, Z. Wang, Y. D. Hong, and X. N. Zhu 2019. Effects of microwave-assisted pyrolysis on the microstructure of bituminous coals. Energy 187:14. doi:10.1016/j.energy.2019.115986.
  • Li, W. W., Y. G. Tang, Q. J. Zhao, and Q. Wei 2015. Sulfur and nitrogen in the high-sulfur coals of the Late Paleozoic from China. Fuel 155:115–21. doi:10.1016/j.fuel.2015.04.002.
  • Li, Y., Z. S. Wang, S. H. Tang, and D. Elsworth 2022b. Re-Evaluating adsorbed and free methane content in coal and its ad- and desorption processes analysis. Chemical Engineering Journal 428:131946. doi:10.1016/j.cej.2021.131946.
  • Li, Y., J. H. Yang, Z. J. Pan, and W. S. Tong 2020. Nanoscale pore structure and mechanical property analysis of coal: An insight combining AFM and SEM images. Fuel 260:116352. doi:10.1016/j.fuel.2019.116352.
  • Li, Y., C. Zhang, D. Z. Tang, Q. Gan, X. L. Niu, K. Wang, and R. Y. Shen 2017. Coal pore size distributions controlled by the coalification process: An experimental study of coals from the Junggar, Ordos and Qinshui basins in China. Fuel 206:352–63. doi:10.1016/j.fuel.2017.06.028.
  • Liu, X. F., D. Z. Song, X. Q. He, Z. P. Wang, M. R. Zeng, and L. K. Wang 2019. Quantitative analysis of coal nanopore characteristics using atomic force microscopy. Powder Technology 346:332–40 doi:10.1016/j.powtec.2019.02.027.
  • Liu, H. Y., L. Xu, Y. Jin, B. G. Fan, X. L. Qiao, and Y. X. Yang 2015a. Effect of coal rank on structure and dielectric properties of chars. Fuel 153:249–56. doi:10.1016/j.fuel.2015.03.008.
  • Liu, H. M., J. Y. Zhang, C. G. Zheng, and Y. Meng. 2004. Quantum chemical study of the pyrolysis stability of pyrrolic nitrogen and pyridinic nitrogen in coal. Journal of Huazhong University of Science and Technology 32:13–15 doi:10.13245/j.hust.2004.11.005. In Chinese with English abstract.
  • Liu, J. Z., J. F. Zhu, J. Cheng, J. H. Zhou, and K. F. Cen 2015b. Pore structure and fractal analysis of Ximeng lignite under microwave irradiation. Fuel 146:41–50 doi:10.1016/j.fuel.2015.01.019.
  • Luo, C. J., D. F. Zhang, Z. M. Lun, C. P. Zhao, H. T. Wang, Z. J. Pan, Y. H. Li, J. Zhang, and S. Q. Jia 2019. Displacement behaviors of adsorbed coalbed methane on coals by injection of SO2/CO2 binary mixture. Fuel 247:356–67. doi:10.1016/j.fuel.2019.03.057.
  • Marek, A. W., R. P. Jan, and A. M. Jacob 1995. The fate of nitrogen functionalities during pyrolysis and combustion. Fuel 74:507–16 doi:10.1016/0016-2361(95)98352-F.
  • Marland, S., A. Merchant, and N. Rowson 2001. Dielectric properties of coal. Fuel 80:1839–49 doi:10.1016/S0016-2361(01)00050-3.
  • Moore, T. A. 2012. Coalbed methane: A review. International Journal of Coal Geology 101:36–81 doi:10.1016/j.coal.2012.05.011.
  • Mou, P. G., J. N. Pan, K. Wang, J. Wei, Y. H. Yang, and X. L. Wang 2021. Influences of hydraulic fracturing on microfractures of high-rank coal under different in-situ stress conditions. Fuel 287:119566. doi:10.1016/j.fuel.2020.119566.
  • Neimark, A. V., and K. K. Unger 1993. Method of discrimination of surface fractality. Journal of Colloid and Interface Science 158:412–19 doi:10.1006/jcis.1993.1273.
  • Qiao, L., J. W. Hao, Z. J. Li, N. F. Deng, and Q. W. Li. 2021. Research on the method of hard rock cracking based on microwave heating technology. Journal of China Coal Society 46:241–48 doi:10.13225/j.cnki.jccs.2020.1122. In Chinese with English abstract.
  • Sing, K. S. 1985. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry. 57:603–19 doi:10.1351/pac198557040603.
  • Stanger, R., T. Quang Anh, T. Attalla, N. Smith, J. Lucas, and T. Wall 2016. The pyrolysis behaviour of solvent extracted metaplast material from heated coal using LDI-TOF mass spectroscopy measurements. Journal of Analytical and Applied Pyrolysis 120:258–68 doi:10.1016/j.jaap.2016.05.014.
  • Sun, W. J., N. Wang, W. Chu, and C. F. Jiang 2015. The role of volatiles and coal structural variation in coal methane adsorption. Science Bulletin 60:532–40 doi:10.1007/s11434-015-0747-6.
  • Toda, Y., M. Hatami, S. Toyoda, Y. Yoshida, and H. Honda 1971. Micropore structure of coal. Fuel 50:187–200 doi:10.1016/0016-2361(71)90008-1.
  • Wang, X. L., J. N. Pan, K. Wang, P. W. Mou, and J. X. Li 2022. Fracture variation in high-rank coal induced by hydraulic fracturing using X-ray computer tomography and digital volume correlation. International Journal of Coal Geology 252:103942. doi:10.1016/j.coal.2022.103942.
  • Wang, W. D., F. W. Xin, Y. N. Tu, and Z. G. Wang 2018. Pore structure development in Xilingol lignite under microwave irradiation. Journal of the Energy Institute 91:75–86 doi:10.1016/j.joei.2016.10.005.
  • White, C. M., D. H.,Smith,K. L., Jones, A. L.,Goodman, S. A.,Jikich,R. B.,LaCount, S. B.,DuBose,E., Ozdemir,B. I., Morsi, and K. T., Schroeder,2005. Sequestration of carbon dioxide in coal with enhanced coalbed methane recovery - A review.Energy Fuels 19: 659–724 doi:10.1021/ef040047w.
  • Xiao, B., J. P. Boudou, and K. M. Thomas 2005. Reactions of nitrogen and oxygen surface groups in nanoporous carbons under inert and reducing atmospheres. Langmuir 21:3400–09 doi:10.1021/la0472495.
  • Xu, Y., Z. M. Lun, Z. J. Pan, H. T. Wang, X. Zhou, C. P. Zhao, and D. F. Zhang 2022a. Occurrence space and state of shale oil: A review. Journal of Petroleum Science and Engineering 211:110183. doi:10.1016/j.petrol.2022.110183.
  • Xu, Y., Z. M. Lun, X. Zhou, G. L. Zhang, H. T. Wang, C. P. Zhao, H. Zhang, and D. F. Zhang 2022b. Influences of microwave irradiation on pore, fracture and methane adsorption of deep shale. Journal of Natural Gas Science & Engineering 101:104489. doi:10.1016/j.jngse.2022.104489.
  • Yang, R. T. 2003. Adsorbents: Fundamentals and applications. New York: John Wiley & Sons, Inc.
  • Yang, R., S. L. Liu, H. T. Wang, Z. M. Lun, X. Zhou, C. P. Zhao, C. G. Min, H. Zhang, Y. Xu, and D. F. Zhang 2021. Influence of H2O on adsorbed CH4 on coal displaced by CO2 injection: Implication for CO2 sequestration in coal seam with enhanced CH4 recovery (CO2-ECBM). Industrial & Engineering Chemistry Research 60:15817–33 doi:10.1021/acs.iecr.1c03099.
  • Yao, M. Y., Y. H. Liu, and D. F. Che. 2003. Investigation of nitrogen functionality in Yibin coal and its char. Journal of Xi’An Jiaotong University 37:759–63 doi:10.3321/j.issn:0253-987X.2003.07.025. In Chinese with English abstract.
  • Yao, Y. B., D. M. Liu, D. Z. Tang, S. H. Tang, and W. H. Huang 2008. Fractal characterization of adsorption-pores of coals from North China: An investigation on CH4 adsorption capacity of coals. International Journal of Coal Geology 73:27–42 doi:10.1016/j.coal.2007.07.003.
  • Zhang, H., Z. C. Hu, Y. Xu, X. X. Fu, W. Li, and D. F. Zhang 2021a. Impacts of Long-Term exposure to supercritical carbon dioxide on physicochemical properties and adsorption and desorption capabilities of moisture-equilibrated coals. Energy & Fuels 35:12270–87 doi:10.1021/acs.energyfuels.1c01152.
  • Zhang, L. K., T. H. Kang, J. T. Kang, X. Y. Zhang, B. Zhang, J. Q. Guo, and Z. Y. Chai 2021. Response of Molecular Structures and Methane Adsorption Behaviors in Coals Subjected to Cyclical Microwave Exposure. ACS Omega 6:31566–77 doi:10.1021/acsomega.1c04056.
  • Zhang, H., Z. M. Lun, X. Zhou, H. T. Wang, C. P. Zhao, and D. F. Zhang 2021b. Role of H2O of gas-bearing shale in its physicochemical properties and CH4 adsorption performance alteration due to microwave irradiation. Energy & Fuels 35:19464–80 doi:10.1021/acs.energyfuels.1c03254.
  • Zhang, J., D. F. Zhang, P. L. Huo, W. P. Jiang, Z. Yang, R. Yang, W. Li, and S. Q. Jia. 2017. Functional groups on coal matrix surface dependences of carbon dioxideand methane adsorption: A perspective. Chemical Industry and Engineering Progress 36:1977–88 doi:10.16085/j.issn.1000-6613.2017.06.003. In Chinese with English abstract.
  • Zhang, D. F., J. Zhang, P. L. Huo, Q. Q. Wang, H. H. Wang, W. P. Jiang, J. Tao, and L. Zhu 2016. Influences of SO2, NO, and CO2 exposure on pore morphology of various rank coals: Implications for coal-fired flue gas sequestration in deep coal seams. Energy & Fuels 30:5911–21 doi:10.1021/acs.energyfuels.6b00220.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.