137
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A hybrid fuel cell, solar thermal collector, and coal-fired power plant; energetic, exergetic, and emission analysis

, , , , &
Pages 7726-7747 | Received 04 Apr 2022, Accepted 14 Aug 2022, Published online: 26 Aug 2022

References

  • A Çengel, Y. 2006. Thermodynamics: An engineering approach. New York: McGraw Hill.
  • Al-Hamed, K. H. M., and I. Dincer. 2021. A novel multigeneration ammonia-based carbon capturing system powered by a geothermal power plant for cleaner applications. Journal of Cleaner Production 321:129017. doi:10.1016/j.jclepro.2021.129017.
  • Al-Zareer, M., I. Dincer, and M. A. Rosen. 2020. Production of hydrogen-rich syngas from novel processes for gasification of petroleum cokes and coals. International Journal of Hydrogen Energy 45 (20):11577–92. doi:10.1016/j.ijhydene.2019.10.108.
  • Alaswad, A., Baroutaji, A., Rezk, A., Ramadan, M. and Olabi, A.G. 2022. Advances in solid oxide fuel cell materials. In Encyclopedia of Smart Materials, ed. A.-G. Olabi, pp. 334–40. Elsevier: Oxford.
  • Alayi, R., and J. Velayti. 2021. Modeling/optimization and effect of environmental variables on energy production based on PV/wind turbine hybrid system. Jurnal Ilmiah Teknik Elektro Komputer Dan Informatika (JITEKI) 7 (1):101–07. doi:10.26555/jiteki.v7i1.20515.
  • Algieri, A., and P. Morrone. 2022. Thermo-economic investigation of solar-biomass hybrid cogeneration systems based on small-scale transcritical organic rankine cycles. Applied Thermal Engineering 210:118312. doi:10.1016/j.applthermaleng.2022.118312.
  • Alirahmi, S. M., S. F. Mousavi, P. Ahmadi, and A. Arabkoohsar. 2021. Soft computing analysis of a compressed air energy storage and SOFC system via different artificial neural network architecture and tri-objective grey wolf optimization. Energy 236:121412. doi:10.1016/j.energy.2021.121412.
  • Alwan, N. T., M. H. Majeed, I. M. Khudhur, S. E. Shcheklein, O. M. Ali, S. J. Yaqoob, and R. Alayi. 2022. Assessment of the performance of solar water heater: An experimental and theoretical investigation. International Journal of Low-Carbon Technologies 17:528–39. doi:10.1093/ijlct/ctac032.
  • Arslan, O., E. Acikkalp, and G. Genc. 2022. A multi-generation system for hydrogen production through the high-temperature solid oxide electrolyzer integrated to 150 mw coal-fired steam boiler Vol. 315, p. 123201. Fuel
  • Azad, A. K. 2020. Advances in Clean Energy Technologies. Cambridge, Massachusetts: Academic Press.
  • Bicer, Y., and I. Dincer. 2015. Energy and exergy analyses of an integrated underground coal gasification with SOFC fuel cell system for multigeneration including hydrogen production. International Journal of Hydrogen Energy 40 (39):13323–37. doi:10.1016/j.ijhydene.2015.08.023.
  • Chen, L., H. Huang, P. Tang, D. Yao, H. Yang, and H. Roohbakhsh. 2022. A combined energy system for generating electrical and thermal energies using concentrating solar system, fuel cell and organic rankine cycle; energy and exergy assessment. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–20. doi:10.1080/15567036.2022.2043957.
  • Chen, S., N. Lior, and W. Xiang. 2015. Coal gasification integration with solid oxide fuel cell and chemical looping combustion for high-efficiency power generation with inherent CO2 capture. Applied Energy 146:298–312. doi:10.1016/j.apenergy.2015.01.100.
  • Chen, H., D. Lu, J. An, S. Qiao, Y. Dong, X. Jiang, G. Xu, and T. Liu. 2022. Thermo-economic analysis of a novel biomass gasification-based power system integrated with a supercritical CO2 cycle and a coal-fired power plant. Energy Conversion and Management 266:115860. doi:10.1016/j.enconman.2022.115860.
  • Chen, Y., H. Niroumandi, and Y. Duan. 2021. Thermodynamic and economic analyses of a syngas-fueled high-temperature fuel cell with recycling processes in novel electricity and freshwater cogeneration plant. Energy 235:121313. doi:10.1016/j.energy.2021.121313.
  • Cheng, S., G. Zhao, M. Gao, Y. Shi, M. Huang, and M. Marefati. 2021. A new hybrid solar photovoltaic/phosphoric acid fuel cell and energy storage system: Energy and exergy performance. International Journal of Hydrogen Energy 46 (11):8048–66. doi:10.1016/j.ijhydene.2020.11.282.
  • Cimen, F. M., B. Kumuk, and M. Ilbas. 2022. Simulation of hydrogen and coal gas fueled flat-tubular solid oxide fuel cell (FT-SOFC). International Journal of Hydrogen Energy 47 (5):3429–36. doi:10.1016/j.ijhydene.2021.07.231.
  • Cooper, R., D. Bove, E. Audasso, M. C. Ferrari, and B. Bosio. 2021. A feasibility assessment of a retrofit molten carbonate fuel cell coal-fired plant for flue gas co2 segregation. International Journal of Hydrogen Energy 46 (28):15024–31. doi:10.1016/j.ijhydene.2020.09.189.
  • Drioli, E., and L. Giorno. 2010. Comprehensive membrane science and engineering, Vol. 1. Oxford: Newnes.
  • Duan, L., K. Xia, T. Feng, S. Jia, and J. Bian. 2016. Study on coal-fired power plant with CO2 capture by integrating molten carbonate fuel cell system. Energy 117:578–89. doi:10.1016/j.energy.2016.03.063.
  • Dudley, V. E., Kolb, G. J., Mahoney, A. R., Mancini, T. R., Matthews, C. W., Sloan, M. I.C H A.E. L. and Kearney, D. 1994. Test results: SEGS LS-2 solar collector. Albuquerque: Sandia National Labs.NM (United States).
  • El-Emam, R. S., and I. Dincer. 2015. Thermal modeling and efficiency assessment of an integrated biomass gasification and solid oxide fuel cell system. International Journal of Hydrogen Energy 40 (24):7694–706. doi:10.1016/j.ijhydene.2015.02.061.
  • Foster, E., M. Contestabile, J. Blazquez, B. Manzano, M. Workman, and N. Shah. 2017. The unstudied barriers to widespread renewable energy deployment: Fossil fuel price responses. Energy Policy 103:258–64. doi:10.1016/j.enpol.2016.12.050.
  • Godula-Jopek, D. I. H. A., and A. F. Westenberger. 2022. Fuel cell types: PEMFC/DMFC/AFC/PAFC//MCFC/SOFC. In Encyclopedia of Energy Storage, ed. L. F. Cabeza, pp. 250–65. Elsevier: Oxford.
  • Hofmann, M., and G. Tsatsaronis. 2018. Comparative exergoeconomic assessment of coal-fired power plants – binary rankine cycle versus conventional steam cycle. Energy 142:168–79. doi:10.1016/j.energy.2017.09.117.
  • Homel, M., T. M. Gür, J. H. Koh, and A. V. Virkar. 2010. Carbon monoxide-fueled solid oxide fuel cell. Journal of Power Sources 195 (19):6367–72. doi:10.1016/j.jpowsour.2010.04.020.
  • Hosseini, S. E. 2022. Transition away from fossil fuels toward renewables: Lessons from Russia-Ukraine crisis. Future Energy 1 (1):2–5. doi:10.55670/fpll.fuen.1.1.8.
  • Huang, W., and M. Marefati. 2020. Energy, exergy, environmental and economic comparison of various solar thermal systems using water and thermia oil B base fluids, and CuO and Al2O3 nanofluids. Energy Reports 6:2919–47. doi:10.1016/j.egyr.2020.10.021.
  • Jin, X., A. Ku, B. Ohara, K. Huang, and S. Singh. 2021. Performance analysis of a 550mwe solid oxide fuel cell and air turbine hybrid system powered by coal-derived syngas. Energy 222:119917. doi:10.1016/j.energy.2021.119917.
  • Karimi, M., M. Mehrpooya, and F. Pourfayaz. 2022. Proposal and investigation of a novel hybrid hydrogen production and liquefaction process using solid oxide electrolyzer, solar energy, and thermoelectric generator. Journal of Cleaner Production 331:130001. doi:10.1016/j.jclepro.2021.130001.
  • Manesh, M. H. K., M. Hajizadeh Aghdam, H. Vazini Modabber, A. Ghasemi, and M. Khajeh Talkhoncheh. 2022. Techno-economic, environmental and emergy analysis and optimization of integrated solar parabolic trough collector and multi effect distillation systems with a combined cycle power plant. Energy 240:122499. doi:10.1016/j.energy.2021.122499.
  • Marefati, M., and M. Mehrpooya. 2019. Introducing and investigation of a combined molten carbonate fuel cell, thermoelectric generator, linear fresnel solar reflector and power turbine combined heating and power process. Journal of Cleaner Production 240:118247. doi:10.1016/j.jclepro.2019.118247.
  • Marefati, M., M. Mehrpooya, and S. A. Mousavi. 2019. Introducing an integrated SOFC, linear Fresnel solar field, Stirling engine and steam turbine combined cooling, heating and power process. International Journal of Hydrogen Energy 44 (57):30256–79. doi:10.1016/j.ijhydene.2019.09.074.
  • Marefati, M., M. Mehrpooya, and F. Pourfayaz. 2021. Performance analysis of an integrated pumped-hydro and compressed-air energy storage system and solar organic rankine cycle. Journal of Energy Storage 44:103488. doi:10.1016/j.est.2021.103488.
  • Marefati, M., M. Mehrpooya, and M. B. Shafii. 2018. Optical and thermal analysis of a parabolic trough solar collector for production of thermal energy in different climates in Iran with comparison between the conventional nanofluids. Journal of Cleaner Production 175:294–313. doi:10.1016/j.jclepro.2017.12.080.
  • Marefati, M., M. Mehrpooya, and M. B. Shafii. 2019. A hybrid molten carbonate fuel cell and parabolic trough solar collector, combined heating and power plant with carbon dioxide capturing process. Energy Conversion and Management 183:193–209. doi:10.1016/j.enconman.2019.01.002.
  • Mehrpooya, M., N. Ghadimi, M. Marefati, and S. A. Ghorbanian. 2021. Numerical investigation of a new combined energy system includes parabolic dish solar collector, Stirling engine and thermoelectric device. International Journal of Energy Research 45 (11):16436–55. doi:10.1002/er.6891.
  • Mehrpooya, M., B. Ghorbani, F. K. Bahnamiri, and M. Marefati. 2020. Solar fuel production by developing an integrated biodiesel production process and solar thermal energy system. Applied Thermal Engineering 167:114701. doi:10.1016/j.applthermaleng.2019.114701.
  • Mehrpooya, M., M. Raeesi, F. Pourfayaz, and M. Delpisheh. 2021. Investigation of a hybrid solar thermochemical water-splitting hydrogen production cycle and coal-fueled molten carbonate fuel cell power plant. Sustainable Energy Technologies and Assessments 47:101458. doi:10.1016/j.seta.2021.101458.
  • Midilli, A., H. Kucuk, M. E. Topal, U. Akbulut, and I. Dincer. 2021. A comprehensive review on hydrogen production from coal gasification: Challenges and opportunities. International Journal of Hydrogen Energy 46 (50):25385–412. doi:10.1016/j.ijhydene.2021.05.088.
  • Nedaei, N., S. Azizi, and L. G. Farshi. 2022. Performance assessment and multi-objective optimization of a multi-generation system based on solar tower power: A case study in Dubai, UAE. Process Safety and Environmental Protection 161:295–315. doi:10.1016/j.psep.2022.03.022.
  • Peng, M.-Y.-P., C. Chen, X. Peng, and M. Marefati. 2020. Energy and exergy analysis of a new combined concentrating solar collector, solid oxide fuel cell, and steam turbine CCHP system. Sustainable Energy Technologies and Assessments 39:100713. doi:10.1016/j.seta.2020.100713.
  • Rostami, M., Farajollahi, A.H., Marefati, M., Fili, R. and Bagherpor, F. 2022. A comparative analysis and optimization of two supersonic hybrid solid oxide fuel cell and turbine-less jet engine propulsion systems for unmanned aerial vehicles. Renewable Energy Research and Applications 3(2) :237–53.
  • Rostami, M., M. D. Manshadi, A. H. Farajollahi, and M. Marefati. 2022. Introducing and evaluation of a new propulsion system composed of solid oxide fuel cell and downstream cycles; usage in unmanned aerial vehicles. International Journal of Hydrogen Energy 47 (28):13693–709. doi:10.1016/j.ijhydene.2022.02.104.
  • Saberi Shahmarvandi, N., Shahrokh Ghahfarokhi, F., Delshad Chermahini, Z., Faramarzi, A., Raisi, A., Alayi, R. and Tahmasebi, A. 2022. Effects of different target solar fractions on providing heat required for space heating, sanitary hot water, and swimming pool in Iran: A case study in cold climate. Journal of Engineering :2022.
  • Samanta, S., and S. Ghosh. 2016. A thermo-economic analysis of repowering of a 250 mw coal fired power plant through integration of molten carbonate fuel cell with carbon capture. International Journal of Greenhouse Gas Control 51:48–55. doi:10.1016/j.ijggc.2016.04.021.
  • Singh, M., D. Zappa, and E. Comini. 2021. Solid oxide fuel cell: Decade of progress, future perspectives and challenges. International Journal of Hydrogen Energy 46 (54):27643–74. doi:10.1016/j.ijhydene.2021.06.020.
  • Skorek-Osikowska, A. 2022. Thermodynamic and environmental study on synthetic natural gas production in power to gas approaches involving biomass gasification and anaerobic digestion. International Journal of Hydrogen Energy 47 (5):3284–93. doi:10.1016/j.ijhydene.2021.01.002.
  • Su, Z., and L. Yang. 2022. A novel and efficient cogeneration system of waste heat recovery integrated carbon capture and dehumidification for coal-fired power plants. Energy Conversion and Management 255:115358. doi:10.1016/j.enconman.2022.115358.
  • Wang, S., X. Wu, S. Jafarmadar, P. K. Singh, S. Khorasani, M. Marefati, and A. Alizadeh. 2022. Numerical assessment of a hybrid energy system based on solid oxide electrolyzer, solar energy and molten carbonate fuel cell for the generation of electrical energy and hydrogen fuel with electricity storage option. Journal of Energy Storage 54:105274. doi:10.1016/j.est.2022.105274.
  • Wu, H., J. Xiao, X. Zeng, X. Li, J. Yang, Y. Zou, S. Liu, P. Dong, Y. Zhang, J. Liu, et al. 2019. A high performance direct carbon solid oxide fuel cell – a green pathway for brown coal utilization. Applied Energy 248:679–87. doi:10.1016/j.apenergy.2019.04.104.
  • Yan, H., M. Liu, D. Chong, C. Wang, and J. Yan. 2021. Dynamic performance and control strategy comparison of a solar-aided coal-fired power plant based on energy and exergy analyses. Energy 236:121515. doi:10.1016/j.energy.2021.121515.
  • Yang, Y., Liu, Y., Chen, Z., Li, M.,Rao, M., Wang, X., Feng, P., Zhou, F. and Ling, Y. 2022.Enhanced conversion efficiency and coking resistance of solid oxide fuel cells with vertical-microchannel anode fueled in CO2 assisted low-concentration coal-bed methane.Separation and Purification Technology Vol. 288:p. 120665.
  • Yang, Z., X. Ren, and H. Zhang. 2022. A cost‐efficient path to utilize coal via solid oxide fuel cells and alkali metal thermoelectric converters. International Journal of Energy Research 46:11109–11122.
  • Yazdanifard, F., E. Ebrahimnia-Bajestan, and M. Ameri. 2017. Performance of a parabolic trough concentrating photovoltaic/thermal system: Effects of flow regime, design parameters, and using nanofluids. Energy Conversion and Management 148:1265–77. doi:10.1016/j.enconman.2017.06.075.
  • Ye, X.-F., S. R. Wang, J. Zhou, F. R. Zeng, H. W. Nie, and T. L. Wen. 2010. Assessment of the performance of ni-yttria-stabilized zirconia anodes in anode-supportEd solid oxide fuel cells operating on H2–CO syngas fuels. Journal of Power Sources 195 (21):7264–67. doi:10.1016/j.jpowsour.2010.04.016.
  • Zhao, F., and A. V. Virkar. 2005. Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters. Journal of Power Sources 141 (1):79–95. doi:10.1016/j.jpowsour.2004.08.057.
  • Zhu, Y., Li, K., Wang, Q., Cen, J., Fang, M. and Luo, Z. 2022.Low-Rank coal pyrolysis polygeneration technology with semi-coke heat carrier based on the dual-fluidized bed to co-produce electricity, oil and chemical products: Process simulation and techno-economic evaluation.Fuel Processing Technology Vol. 230:p. 107217.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.