253
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Investigation on the co-pyrolysis of municipal solid waste and sawdust: pyrolysis behaviors, kinetics, and thermodynamic analysis

, ORCID Icon, , , &
Pages 8001-8011 | Received 11 May 2022, Accepted 17 Aug 2022, Published online: 05 Sep 2022

References

  • Azam, M., A. Ashraf, S. S. Jahromy, W. Raza, H. Khalid, N. Raza, and F. Winter. 2020. Isoconversional nonisothermal kinetic analysis of municipal solid waste, refuse‐derived fuel, and coal. Energy Science & Engineering 8 (10):3728–39. doi:http://dx.doi.org/10.1002/ese3.778.
  • Chen, X., R. Wu, Y. Sun, and X. Jian. 2022. Synergistic Effects on the Co-pyrolysis of Agricultural Wastes and Sewage Sludge at Various Ratios. Acs Omega 7 (1):1264–72. doi:http://dx.doi.org/10.1021/acsomega.1c05884.
  • Ding, Y., J. Zhao, J.-W. Liu, J. Zhou, L. Cheng, J. Zhao, Z. Shao, Ç. Iris, B. Pan, X. Li, et al. 2021. A review of China’s municipal solid waste (msw) and comparison with international regions: Management and technologies in treatment and resource utilization. Journal of Cleaner Production 293: 126144. doi:http://dx.doi.org/10.1016/j.jclepro.2021.126144
  • Engamba Esso, S. B., Z. Xiong, W. Chaiwat, M. F. Kamara, X. Longfei, J. Xu, J. Ebako, L. Jiang, S. Su, S. Hu, et al. 2022. Review on synergistic effects during co-pyrolysis of biomass and plastic waste: Significance of operating conditions and interaction mechanism. Biomass & Bioenergy 159: 106415. doi:http://dx.doi.org/10.1016/j.biombioe.2022.106415
  • Ghassemi-Golezani, K., and S. Farhangi-Abriz. 2022. Improving plant available water holding capacity of soil by solid and chemically modified biochars. Rhizosphere 21: 100469. doi:http://dx.doi.org/10.1016/j.rhisph.2021.100469
  • Hassan, H., J. K. Lim, and B. H. Hameed. 2016. Recent progress on biomass co-pyrolysis conversion into high-quality bio-oil. Bioresource Technology 221: 645–55. doi:http://dx.doi.org/10.1016/j.biortech.2016.09.026
  • Hossain, S., I. A. Shozib, and M. R. Islam. 2021. Production and physico-chemical properties analysis of co-pyrolytic oil derived from co-pyrolysis of scrap tires and sawdust, Energy Sources, Part A: Recovery. Utilization, and Environmental Effects 1–13. doi:http://dx.doi.org/10.1080/15567036.2021.1985187.
  • Huang, S., J. Qin, T. Chen, C. Yi, S. Zhang, Z. Zhou, and N. Zhou. 2022. Co-Pyrolysis of different torrefied Chinese herb residues and low-density polyethylene: Kinetic and products distribution. The Science of the Total Environment 802: 149752. doi:http://dx.doi.org/10.1016/j.scitotenv.2021.149752
  • Jiang, L., Z. Zhou, H. Xiang, Y. Yang, H. Tian, J. Wang, Characteristics and synergistic effects of co-pyrolysis of microalgae with polypropylene. Fuel 314 (2020): 122765. http://dx.doi.org/10.1016/j.fuel.2021.122765
  • Jun, Z., W. Shuzhong, W. Zhiqiang, M. Haiyu, and C. Lin. 2017. Hydrogen-Rich syngas produced from the co-pyrolysis of municipal solid waste and wheat straw. International Journal of Hydrogen Energy 42 (31):19701–08. doi:http://dx.doi.org/10.1016/j.ijhydene.2017.06.166.
  • Khan, S., R. Anjum, S. T. Raza, N. Ahmed Bazai, and M. Ihtisham. 2022. Technologies for municipal solid waste management: Current status, challenges, and future perspectives. Chemosphere 288 (Pt 1):132403. doi:http://dx.doi.org/10.1016/j.chemosphere.2021.132403.
  • Lee, D. J., J. S. Lu, and J. S. Chang. 2020. Pyrolysis synergy of municipal solid waste (MSW): A review. Bioresource Technology 318: 123912. doi:http://dx.doi.org/10.1016/j.biortech.2020.123912
  • Li, Q., A. Faramarzi, S. Zhang, Y. Wang, X. Hu, and M. Gholizadeh. 2020. Progress in catalytic pyrolysis of municipal solid waste. Energy Conversion and Management 226: 113525. doi:http://dx.doi.org/10.1016/j.enconman.2020.113525
  • Li, Y., Z. Yu, L. Chen, F. Tang, and X. Ma. 2020. Fast catalytic co-pyrolysis characteristics and kinetics of Chlorella Vulgaris and municipal solid waste over hierarchical ZSM-5 zeolite. BioEnergy Research 14 (1):226–40. doi:http://dx.doi.org/10.1007/s12155-020-10185-w.
  • Lu, P., Q. Huang, A. C. Bourtsalas, Y. Chi, and J. Yan. 2018. Synergistic effects on char and oil produced by the co-pyrolysis of pine wood, polyethylene and polyvinyl chloride. Fuel 230: 359–67. doi:http://dx.doi.org/10.1016/j.fuel.2018.05.072
  • Mallick, D., M. K. Poddar, P. Mahanta, and V. S. Moholkar. 2018. Discernment of synergism in pyrolysis of biomass blends using thermogravimetric analysis. Bioresource Technology 261: 294–305. doi:http://dx.doi.org/10.1016/j.biortech.2018.04.011
  • Meng, H., S. Wang, L. Chen, Z. Wu, and J. Zhao. 2015. Thermal behavior and the evolution of char structure during co-pyrolysis of platanus wood blends with different rank coals from northern China. Fuel 158: 602–11. doi:http://dx.doi.org/10.1016/j.fuel.2015.06.023
  • Mishra, R. K., A. Sahoo, and K. Mohanty. 2019. Pyrolysis kinetics and synergistic effect in co-pyrolysis of Samanea saman seeds and polyethylene terephthalate using thermogravimetric analyser. Bioresource Technology 289: 121608. doi:http://dx.doi.org/10.1016/j.biortech.2019.121608
  • Mortezaeikia, V., O. Tavakoli, and M. S. Khodaparasti. 2021. A review on kinetic study approach for pyrolysis of plastic wastes using thermogravimetric analysis. Journal of Analytical and Applied Pyrolysis 156: 160. doi:http://dx.doi.org/10.1016/j.jaap.2021.105340
  • Mphahlele, K., R. H. Matjie, and P. O. Osifo. 2021. Thermodynamics, kinetics and thermal decomposition characteristics of sewage sludge during slow pyrolysis. Journal of Environmental Management 284: 112006. doi:http://dx.doi.org/10.1016/j.jenvman.2021.112006
  • Park, Y.-K., M. Z. Siddiqui, S. Karagöz, T. U. Han, A. Watanabe, and Y.-M. Kim. 2021. In-Situ catalytic co-pyrolysis of kukersite oil shale with black pine wood over acid zeolites. Journal of Analytical and Applied Pyrolysis 155. doi:http://dx.doi.org/10.1016/j.jaap.2021.105050.
  • Salema, A. A., R. M. W. Ting, and Y. K. Shang. 2019. Pyrolysis of blend (oil palm biomass and sawdust) biomass using TG-MS. Bioresource Technology 274: 439–46. doi:http://dx.doi.org/10.1016/j.biortech.2018.12.014
  • Salvilla, J. N. V., B. I. G. Ofrasio, A. P. Rollon, F. G. Manegdeg, R. R. M. Abarca, and M. D. G. de Luna. 2020. Synergistic co-pyrolysıs of polyolefin plastics with wood and agricultural wastes for biofuel production. Applied Energy 279. doi:http://dx.doi.org/10.1016/j.apenergy.2020.115668.
  • Singh, R. K., T. Patil, D. Pandey, S. P. Tekade, and A. N. Sawarkar. 2022. Co-Pyrolysis of petroleum coke and banana leaves biomass: Kinetics, reaction mechanism, and thermodynamic analysis. Journal of Environmental Management 301: 113854. doi:http://dx.doi.org/10.1016/j.jenvman.2021.113854
  • Singh, S., T. Patil, S. P. Tekade, M. B. Gawande, and A. N. Sawarkar. 2021. Studies on individual pyrolysis and co-pyrolysis of corn cob and polyethylene: Thermal degradation behavior, possible synergism, kinetics, and thermodynamic analysis. The Science of the Total Environment 783: 147004. doi:http://dx.doi.org/10.1016/j.scitotenv.2021.147004
  • Tekin, K., S. Ucar, and S. Karagöz. 2019. Influence of co-pyrolysis of waste Tetra Pak with waste motor oil on product distribution and properties for fuel application. Energy & Fuels 33 (11):11101–12. doi:http://dx.doi.org/10.1021/acs.energyfuels.9b02634.
  • Tian, J., T. Zhang, D. Talifu, A. Abulizi, Y. Ji. 2021. Porous carbon materials derived from waste cotton stalk with ultra-high surface area for high performance supercapacitors. Materials Research Bulletin 143: 111457 http://dx.doi.org/10.1016/j.materresbull.2021.111457
  • Vo, T. A., Q. K. Tran, H. V. Ly, B. Kwon, H. T. Hwang, J. Kim, and S.-S. Kim. 2022. Co-Pyrolysis of lignocellulosic biomass and plastics: A comprehensive study on pyrolysis kinetics and characteristics. Journal of Analytical and Applied Pyrolysis 163: 105464. doi:http://dx.doi.org/10.1016/j.jaap.2022.105464
  • Wang, W., G. Luo, Y. Zhao, Y. Tang, K. Wang, X. Li, and Y. Xu. 2022. Kinetic and thermodynamic analyses of co-pyrolysis of pine wood and polyethylene plastic based on Fraser-Suzuki deconvolution procedure. Fuel 322: 124200. doi:http://dx.doi.org/10.1016/j.fuel.2022.124200
  • Wang, Z., J. Lv, F. Gu, J. Yang, and J. Guo. 2020. Environmental and economic performance of an integrated municipal solid waste treatment: A Chinese case study. The Science of the Total Environment 709: 136096. doi:http://dx.doi.org/10.1016/j.scitotenv.2019.136096
  • Wei, C., Z. Yu, X. Zhang, and X. Ma. 2021. Co-Combustion behavior of municipal solid waste and food waste anaerobic digestates: Combustion performance, kinetics, optimization, and gaseous products. Journal of Environmental Chemical Engineering 9 (5):106028. doi:http://dx.doi.org/10.1016/j.jece.2021.106028.
  • Yaras, A., B. Demirel, F. Akkurt, H. Arslanoglu. 2021. Thermal conversion behavior of paper mill sludge: Characterization, kinetic, and thermodynamic analyses. Biomass Conversion and Biorefinery. http://dx.doi.org/10.1007/s13399-020-01232-9
  • Yogalakshmi, K. N., P. Sivashanmugam, S. Kavitha, Y. Kannah, S. Varjani, S. AdishKumar, G. Kumar, and R. B. J. 2022. Lignocellulosic biomass-based pyrolysis: A comprehensive review. Chemosphere 286 (Pt 2):131824. doi:http://dx.doi.org/10.1016/j.chemosphere.2021.131824.
  • Zhang, Y., Z. Yu, X. Zhang, and X. Ma. 2021. Comparative study on the synergistic co-pyrolysis of Thlaspi arvense L. seed with different plastics: Thermal behaviors, product distributions, and kinetics analysis. Biomass Conversion and Biorefinery. doi:http://dx.doi.org/10.1007/s13399-021-01712-6.
  • Zhou, Z., C. Liu, X. Chen, H. Ma, C. Zhou, Y. Wang, and F. Qi. 2019. On-Line photoionization mass spectrometric study of lignin and lignite co-pyrolysis: Insight into the synergetic effect. Journal of Analytical and Applied Pyrolysis 137: 285–92. doi:http://dx.doi.org/10.1016/j.jaap.2018.12.009
  • Zhou, J., G. Liu, S. Wang, H. Zhang, and F. Xu. 2020. Tg-Ftir and Py-gc/ms study of the pyrolysis mechanism and composition of volatiles from flash pyrolysis of pvc. Journal of the Energy Institute 93 (6):2362–70. doi:http://dx.doi.org/10.1016/j.joei.2020.07.009.
  • Zhou, H., A. Meng, Y. Long, Q. Li, and Y. Zhang. 2014. An overview of characteristics of municipal solid waste fuel in China: Physical, chemical composition and heating value. Renewable and Sustainable Energy Reviews 36: 107–22. doi:http://dx.doi.org/10.1016/j.rser.2014.04.024

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.