93
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Neutronic investigation of a VVER-1200 (Th-233U)O2 fuel assembly with protactinium oxide as a burnable absorber coated on the outer surface of the fuel rods

ORCID Icon, ORCID Icon, , , , , ORCID Icon, ORCID Icon & show all
Pages 7650-7664 | Received 07 Jun 2022, Accepted 16 Aug 2022, Published online: 25 Aug 2022

References

  • Abdelghafar Galahom, A. 2020, December. investigate the possibility of burning weapon-grade plutonium using a concentric rods bs assembly of VVER-1200. ( Elsevier Ltd) Annals of Nuclear Energy 148:107758. doi:10.1016/j.anucene.2020.107758.
  • Afroza, S., F. Sharmin, B. Dipa, M. Hasan Ovi, and M. Salahuddin. 2022, June. Three-Stage fuel option for VVER-1200 reactor. ( Elsevier Ltd) Annals of Nuclear Energy 171:109025. doi:10.1016/j.anucene.2022.109025.
  • Alam, B., Syed, D. Kumar, B. Almutairi, P. Kumar Bhowmik, C. Goodwin, and G. T. Parks. 2019, November. Small modular reactor cOre design for civil marine propulsion using micro-heterogeneous duplex fuel. Part I: assembly-level analysis. ( 2018) Nuclear Engineering and Design 346:157–75. doi:10.1016/j.nucengdes.2019.03.005.
  • Alvarez, R. 2013. Managing the uranium-233 stockpile of the United States. Science & Global Security 21 (1):53–69. doi:10.1080/08929882.2013.754311.
  • Anumap, P., L. M. Gantayet, R. Verma, and R. Parthasarath. 2001. Prospecting for Natural 231 pa in India. Mumbai (India): Bhabha Atomic Research Centre. https://inis.iaea.org/search/search.aspx?orig_q=RN:33036771
  • Attom, A. M., J. Wang, J. Huang, C. Yan, and M. Ding. 2020. Comparison of homogeneous and heterogeneous thorium fuel blocks with four drivers in advanced high temperature reactors. International Journal of Energy Research 44 (7):5713–29. doi:10.1002/er.5330.
  • Attom, A. M., J. Wang, C. Yan, and M. Ding. 2019. Neutronic analysis of thorium MOX fuel bLOCKS with different driver fuels in advanced block-type HTRs. Annals of Nuclear Energy 129:101–09. Elsevier Ltd. doi:10.1016/j.anucene.2019.01.049.
  • Björk, I., V. F. Klara, and C. Demazire. 2011. Comparison of thorium-based fuels with different fissile components in existing boiling water reactors. Progress in Nuclear Energy Elsevier Ltd. 53 (6):618–25. doi:10.1016/j.pnucene.2010.03.004.
  • Brown, D. A., M. B. Chadwick, R. Capote, A. C. Kahler, A. Trkov, M. W. Herman, A. A. Sonzogni, Y. Danon, A. D. Carlson, M. Dunn, et al. 2018. ENDF/B-VIII.0: The 8th major release of the nuclear reaction data library with CIELO-Project cross sections, new standards and thermal scattering data. Nuclear Data Sheets 148:1–142. doi:10.1016/j.nds.2018.02.001.
  • Cui, D. Y., X. X. Li, S. P. Xia, X. C. Zhao, C. G. Yu, J. G. Chen, and X. Z. Cai. 2018. Possible Scenarios for the transition to thorium fuel cycle in molten salt reactor by using enriched uranium. Progress in Nuclear Energy 104:75–84. doi:10.1016/j.pnucene.2017.09.003.
  • Deng, N., T. Yu, J. Xie, Z. Chen, Q. Xie, P. Zhao, Z. Liu, and W. Zeng. 2019. Neutronic study of utilization of discrete thorium-uranium fuel pins in CANDU-6 reactor. Nuclear Engineering and Technology 51 (2):377–83. doi:10.1016/j.net.2018.10.022.
  • Dien, L. D., and D. Ngoc Diep. 2017. Verification of VVER-1200 NPP simulator in normal operation and reactor coolant pump Coast-down Transient. World Journal of Engineering and Technology 05 (03):507–19. doi:10.4236/wjet.2017.53043.
  • Dodd, B., T. Britt, C. Lloyd, M. Shah, and B. Goddard. 2020. Novel homogeneous burnable poisons in pressurized water reactor ceramic fuel. Nuclear Engineering and Technology Elsevier Ltd. 52 (12):2874–79. doi:10.1016/j.net.2020.05.021.
  • du Toit, M., and V. V. Naicker. 2018. Neutronic design of homogeneous thorium/Uranium fuel for 24 month fuel cycles in the European pressurized reactor using MCNP6. NuclearEngineering and Design 337 (July) 337 (July), Elsevier: 394–405. doi:10.1016/j.nucengdes.2018.07.023.
  • Dwiddar, M. S., A. A. Badawi, H. H. Abou-Gabal, and I. A. El-Osery. 2015. Investigation of different scenarios of thorium-uranium fuel distribution in the VVER-1200 first core. Annals of Nuclear Energy 85:605–12. Elsevier Ltd. doi:10.1016/j.anucene.2015.06.015.
  • Evans, J. A., M. D. DeHart, K. D. Weaver, and D. D. Keiser. 2022, March. Burnable absorbers in nuclear reactors – a review. ( Elsevier B.V.) Nuclear Engineering and Design 391:111726. doi:10.1016/j.nucengdes.2022.111726.
  • Galahom, A. A. 2017, April. Minimization of the fission product waste by using thorium based fuel instead of uranium dioxide. ( Elsevier B.V.) Nuclear Engineering and Design 314:165–72. doi:10.1016/j.nucengdes.2017.01.024.
  • Galahom, A. A. 2018, September. Reducing the plutonium stockpile around the world using a new design of VVER-1200 assembly. ( Elsevier Ltd) Annals of Nuclear Energy 119:279–86. doi:10.1016/j.anucene.2018.05.022.
  • Galahom, A. A., M. Y. M. Mohsen, and N. Amrani. 2021. Explore the possible advantages of using thorium-based fuel in a pressurized water reactor (PWR) Part 1: neutronic analysis. Nuclear Engineering and Technology, No. Xxxx. Elsevier Ltd, No. Xxxx. Elsevier Ltd. doi:10.1016/j.net.2021.07.019.
  • Jabbari, M., K. Hadad, G. R. Ansarifar, Z. Tabadar, and M. Hashemi-Tilehnoee. 2015 March. Power calculation of VVER-1000 reactor using a thermal method, applied to primary–Secondary circuits. Annals of Nuclear Energy 77:129–32. doi: 10.1016/j.anucene.2014.10.037.
  • Jerome, S. M., S. M. Collins, S. Happel, P. Ivanov, and B. C. Russell. 2018, March. Isolation and purification of protactinium-231. ( 2017) Applied Radiation and Isotopes 134:18–22. doi:10.1016/j.apradiso.2017.07.051.
  • Kabach, O., A. Chetaine, A. Benchrif, and H. Amsil. 2020. Neutronic investigation of the thorium-based mixed-oxide as an alternative fuel in the TRIGA mark-II research reactor – part I: A beginning of life calculations. Annals of Nuclear Energy 140:107075. xxxx Elsevier Ltd. doi:10.1016/j.anucene.2019.107075.
  • Kabach, O., A. Chetaine, A. Benchrif, and H. Amsil. 2021a, December. The use of burnable absorbers integrated into TRISO/QUADRISO particles as a reactivity control method in a pebble-bed HTR reactor fuelled with (Th,233u)o2. ( Elsevier B.V.) Nuclear Engineering and Design 384:111476. doi:10.1016/j.nucengdes.2021.111476.
  • Kabach, O., A. Chetaine, A. Benchrif, H. Amsil, and F. El Banni. 2021b. A comparative analysis of the neutronic performance of thorium mixed with uranium or plutonium in a high‐temperature pebble‐bed reactor. International Journal of Energy Research 45 (11):16824–41. doi:10.1002/er.6935.
  • Kulikov, G. G., E. G. Kulikov, A. N. Shmelev, and V. A. Apse. 2017. Protactinium-231 – new burnable neutron absorber. Nuclear Energy and Technology Elsevier B.V. 3 (4):255–59. doi:10.1016/j.nucet.2017.10.002.
  • Kulikov, G. G., A. N. Shmelev, N. I. Geraskin, E. G. Kulikov, and V. A. Apse. 2016. Advanced nuclear fuel cycle for the RF using actinides breeding in thorium blankets of fusion neutron source. Nuclear Energy and Technology Elsevier B.V. 2 (2):147–50. doi:10.1016/j.nucet.2016.05.014.
  • Malmbeck, R., and N. Lal Banik. 2021. Purification and accurate concentration determination of 231pa. Journal of Radioanalytical and Nuclear Chemistry Springer International Publishing. 328 (3):879–87. doi:10.1007/s10967-021-07699-8.
  • Nichols, A. L., D. L. Aldama, and M. Verpelli. 2007. Handbook of nuclear data for safeguards. International Atomic Energy Agency. http://www-nds.iaea.org.
  • Rabir, M. H., A. Fazli Ismail, and M. Syukri Yahya. 2021. Neutronics calculation of the conceptual TRISO duplex fuel rod dESIGN. Nuclear Materials and Energy 27:101005. Elsevier Ltd. doi:10.1016/j.nme.2021.101005.
  • Raj, D., and U. Kannan. 2022, September. Analysis for the use of thorium based fuel in LWRs. ( Elsevier Ltd) Annals of Nuclear Energy 174:109162. doi:10.1016/j.anucene.2022.109162.
  • Reda, S. M., S. S. Mustafa, and N. A. Elkhawas. 2020. Investigating the performance and safety features of pressurized water reactors using the burnable poisons. Annals of Nuclear Energy 141:107354. Elsevier Ltd. doi:10.1016/j.anucene.2020.107354.
  • ROSATOM. 2015. The VVER today evolution, design and safety. State Atomic Energy Corporation ROSATOM. http://www.rosatom.ru/en/resources/b6724a80447c36958cfface920d36ab1/brochure_the_vver_today.pdf.
  • Shelley, A., and M. Hasan Ovi. 2021. Use of Americium as a burnable absorber for VVER-1200 reactor. Nuclear Engineering and Technology Elsevier Ltd. 53 (8):2454–63. doi:10.1016/j.net.2021.02.024.
  • Tran, H. N., V. Khanh Hoang, P. Hong Liem, and H. T. P. Hoang. 2019. Neutronics design of VVER-1000 fuel assembly with burnable poison particles. Nuclear Engineering and Technology Elsevier Ltd. 51 (7):1729–37. doi:10.1016/j.net.2019.05.026.
  • Tucker, L. P., and S. Usman. 2018, January. Thorium-Based mixed oxide fuel in a pressurized water reactor: a burnup analysis with MCNP. ( Elsevier Ltd) Annals of Nuclear Energy 111:163–75. doi:10.1016/j.anucene.2017.08.057.
  • Tuul, B., and E. G. Kulikov. 2020. Justification of VVER-1000 safety when using fuel compositions doped by protactinium and neptunium. Nuclear Energy and Technology 6 (2):99–104. doi:10.3897/nucet.6.55218.
  • Werner, C. J. 2017. Mcnp® user’s manual code VERSION 6.2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.