465
Views
3
CrossRef citations to date
0
Altmetric
Review

Review on multi-objective optimization of energy management strategy for hybrid electric vehicle integrated with traffic information

, ORCID Icon &
Pages 7914-7933 | Received 16 Nov 2021, Accepted 31 Jul 2022, Published online: 31 Aug 2022

References

  • Bramerdorfer, G., and E. Marth. 2021. Computationally efficient system-level evaluation of battery electric vehicles. 2021 Ieee Workshop on Electrical Machines Design Control and Diagnosis (Wemdcd) 311–17. doi:10.1109/WEMDCD51469.2021.9425674. Accessed 11 August 2021.
  • Cao, J., H. He, and X. Cui. 2021. City buses’ future velocity prediction for multiple driving cycle: A meta supervised learning solution. Iet Intelligent Transport Systems 15 (3):359–70. doi:10.1049/itr2.12019.
  • Cao, J. F., H. W. He, and D. Wei. 2021. Intelligent SOC-consumption allocation of commercial plug-in hybrid electric vehicles in variable scenario. Applied Energy 281: 115942. doi:10.1016/j.apenergy.2020.115942. Accessed 26 October 2020.
  • Chen, B. L., X. F. Li, S. A. Evangelou, and R. Lot. 2020. Joint propulsion and cooling energy management of hybrid electric vehicles by optimal control. IEEE Transactions on Vehicular Technology 69 (5):4894–906. doi:10.1109/TVT.2020.2976726.
  • Cheng, S., L. Li, X. Chen, et al. 2020. Longitudinal autonomous driving based on game theory for intelligent hybrid electric vehicles with connectivity. Applied Energy 268: 115030. doi:10.1016/j.apenergy.2020.115030. Accessed 24 April 2020.
  • Climent, H., B. Pla, P. Bares, and V. Pandey. 2021. Exploiting driving history for optimising the energy management in plug-in hybrid electric vehicles. Energy Conversion and Management. 234: 113919. doi:10.1016/j.enconman.2021.113919.
  • DU, J. Y., X. B. Zhang, T. Z. Wang, Z. Song, X. Yang, H. Wang, M. Ouyang, and X. Wu. 2018. Battery degradation minimization oriented energy management strategy for plug-in hybrid electric bus with multi-energy storage system. Energy. 165: 153–63. doi:10.1016/j.energy.2018.09.084.
  • Ga Bui, V., T. Minh Tu Bui, A. Tuan Hoang, S. Nižetić, R. Sakthivel, V. Nam Tran, V. Hung Bui, D. Engel, and H. Hadiyanto. 2021. Energy storage onboard zero-emission two-wheelers: Challenges and technical solutions. Sustainable Energy Technologies and Assessments. 47: 101435. doi:10.1016/j.seta.2021.101435.
  • Gabor, T., L. Belzner, M. Kiermeier, et al. 2016. A simulation-based architecture for smart cyber-physical systems. 2016 Ieee International Conference on Autonomic Computing (Icac) 374–79.
  • Gao, Y. M., and M. Ehsani. 2010. Design and control methodology of plug-in hybrid electric vehicles. IEEE Transactions on Industrial Electronics 57 (2):633–40. doi:10.1109/TIE.2009.2027918.
  • Guo, H. Q., X. Y. Wang, and L. Li. 2019. State-Of-Charge-Constraint-Based energy management strategy of plug-in hybrid electric vehicle with bus route. Energy Conversion and Management 199: 111972. doi:10.1016/j.enconman.2019.111972. Accessed 28 August 2019.
  • Guo, Q., Z. Zhao, P. Shen, and P. Zhou. 2019. Optimization management of hybrid energy source of fuel cell truck based on model predictive control using traffic light information. Control Theory and Technology 17 (4):309–24. doi:10.1007/s11768-019-9118-1.
  • Han, X., H. He, J. Wu, et al. 2019. Energy management based on reinforcement learning with double deep Q-learning for a hybrid electric tracked vehicle. Applied Energy 254: 113708. doi:10.1016/j.apenergy.2019.113708.
  • He, H. W., J. Q. Guo, J. K. Peng, T. Huachun, and S. Chao. 2018. Real-Time global driving cycle construction and the application to economy driving pro system in plug-in hybrid electric vehicles. Energy. 152: 95–107. doi:10.1016/j.energy.2018.03.061.
  • He, H., H. Jia, C. Sun, and F. Sun. 2018. Stochastic model predictive control of air conditioning system for electric vehicles: sensitivity study, comparison, and improvement. IEEE Transactions on Industrial Informatics 14 (9):4179–89. doi:10.1109/TII.2018.2813315.
  • He, H., Y. Wang, R. Han, et al. 2021. An improved MPC-based energy management strategy for hybrid vehicles using V2V and V2I communications. Energy 225:120273. doi:10.1016/j.energy.2021.120273. Accessed 5 March 2021.
  • Hemmati, S., N. Doshi, D. Hanover, C. Morgan, and M. Shahbakhti. 2021. Integrated cabin heating and powertrain thermal energy management for a connected hybrid electric vehicle. Applied Energy. 283: 116353. doi:10.1016/j.apenergy.2020.116353.
  • Hoang, A. T., V. V. Pham, and X. P. Nguyen. 2021. Integrating renewable sources into energy system for smart city as a sagacious strategy towards clean and sustainable process. Journal of Cleaner Production 305: 127161. doi:10.1016/j.jclepro.2021.127161.
  • Hu, X., T. Liu, X. Qi, and M. Barth. 2019. Reinforcement learning for hybrid and plug-in hybrid electric vehicle energy management: Recent advances and Prospects. IEEE Industrial Electronics Magazine 13 (3):16–25. doi:10.1109/MIE.2019.2913015.
  • Hu, X., X. Zhang, X. Tang, and X. Lin. 2020. Model predictive control of hybrid electric vehicles for fuel economy, emission reductions, and inter-vehicle safety in car-following scenarios. Energy. 196: 117101. doi:10.1016/j.energy.2020.117101.
  • Huang, C. Y., L. Li, S. N. Fang, S. Cheng, and Z. Chen. 2021. Energy saving performance improvement of intelligent connected PHEVs via NN-based lane change decision. Science China Technological Sciences 64 (6):1203–11. doi:10.1007/s11431-020-1746-3.
  • Huang, Y., H. Wang, A. Khajepour, H. He, and J. Ji. 2017. Model predictive control power management strategies for HEVs: A review. Journal of Power Sources. 341: 91–106. doi:10.1016/j.jpowsour.2016.11.106.
  • Khalatbarisoltani, A., M. Kandidayeni, L. Boulon, and X. Hu. 2020. Power allocation strategy based on decentralized convex optimization in modular fuel cell systems for vehicular applications. IEEE Transactions on Vehicular Technology 69 (12):14563–74. doi:10.1109/TVT.2020.3028089.
  • Lahyani, A., R. Abdelhedi, A. C. Ammari, A. Sari, and P. Venet. 2020. Reinforcement learning based adaptive power sharing of battery/supercapacitors hybrid storage in electric vehicles. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–22. doi:10.1080/15567036.2020.1849456.
  • Li, Y., H. He, A. Khajepour, et al. 2019. Energy management for a power-split hybrid electric bus via deep reinforcement learning with terrain information. Applied Energy 255: 113762. doi:10.1016/j.apenergy.2019.113762.
  • Li, Y., H. He, J. Peng, and H. Wang. 2019. Deep reinforcement learning-based energy management for a series hybrid electric vehicle enabled by history cumulative trip information. IEEE Transactions on Vehicular Technology 68 (8):7416–30. doi:10.1109/TVT.2019.2926472.
  • Li, S. Q., H. W. He, and P. F. Zhao. 2021. Energy management for hybrid energy storage system in electric vehicle: A cyber-physical system perspective. Energy 230:120890. doi:10.1016/j.energy.2021.120890.
  • Li, Y., and X. Jiao. 2019. Real-Time energy management for commute HEVs using modified A-ECMS with traffic information recognition. Iet Intelligent Transport Systems 13 (4):729–37. doi:10.1049/iet-its.2018.5274.
  • Li, X., W. Lin, Y. Jin, D. Chen, and T. Chen. 2021. Dynamic energy management strategy of hybrid electric vehicles based on velocity prediction. IFAC-PapersOnline 54 (10):363–69. doi:10.1016/j.ifacol.2021.10.189.
  • Li, J., Y. Liu, D. Qin, G. Li, and Z. Chen. 2020. Research on equivalent factor boundary of equivalent consumption minimization strategy for PHEVs. IEEE Transactions on Vehicular Technology 69 (6):6011–24. doi:10.1109/TVT.2020.2986541.
  • Li, J., H. Wang, H. He, et al. 2021. Battery optimal sizing under a synergistic framework with DQN based power managements for the fuel cell hybrid powertrain. IEEE Transactions on Transportation Electrification 8(1): 36–47. Accessed 22 March 2022.
  • Li, J., X. Wu, S. Hu, and J. Fan. 2021. A deep reinforcement learning based energy management strategy for hybrid electric vehicles in connected traffic environment. IFAC-PapersOnline 54 (10):150–56. doi:10.1016/j.ifacol.2021.10.156.
  • Li, L., S. You, and C. Yang. 2016. Multi-objective stochastic MPC-based system control architecture for plug-in hybrid electric buses. IEEE Transactions on Industrial Electronics 63 (8):4752–63. Accessed 25 March 2016.
  • Li, G. P., J. L. Zhang, and H. W. He. 2017. Battery SOC constraint comparison for predictive energy management of plug-in hybrid electric bus. Applied Energy. 194: 578–87. doi:10.1016/j.apenergy.2016.09.071.
  • Li, J., Q. Zhou, H. Williams, H. Xu, and C. Du. 2022. Cyber-physical data fusion in surrogate- assisted strength pareto evolutionary algorithm for PHEV energy management optimization. IEEE Transactions on Industrial Informatics 18 (6):4107–17. doi:10.1109/TII.2021.3121287.
  • Lian, R. Z., J. K. Peng, Y. K. Wu, et al. 2020. Rule-Interposing deep reinforcement learning based energy management strategy for power-split hybrid electric vehicle. Energy 197:117297.
  • Lian, R., J. Peng, Y. Wu, H. Tan, and H. Zhang. 2020. Rule-Interposing deep reinforcement learning based energy management strategy for power-split hybrid electric vehicle. Energy. 197: 117297. doi:10.1016/j.energy.2020.117297.
  • Lin, X., and H. Li. 2019. Adaptive control strategy extracted from dynamic programming and combined with driving pattern recognition for SPHEB. International Journal of Automotive Technology 20 (5):1009–22. doi:10.1007/s12239-019-0095-7.
  • Lin, X., J. Wu, and Y. Wei. 2021. An ensemble learning velocity prediction-based energy management strategy for a plug-in hybrid electric vehicle considering driving pattern adaptive reference SOC. Energy 234: 121308.
  • Lin, X., S. Zeng, and X. Li. 2021. Online correction predictive energy management strategy using the Q-learning based swarm optimization with fuzzy neural network. Energy 223:120071.
  • Liu, Q., S. Dong, Z. Yang, F. Xu, and H. Chen. 2021. Energy management strategy of hybrid electric vehicles based on driving condition prediction. IFAC-PapersOnline 54 (10):265–70. doi:10.1016/j.ifacol.2021.10.174.
  • Liu, T., X. Hu, S. E. Li, and D. Cao. 2017. Reinforcement learning optimized look-ahead energy management of a parallel hybrid electric vehicle. IEEE/ASME Transactions on Mechatronics 22 (4):1497–507. doi:10.1109/TMECH.2017.2707338.
  • Liu, K., X. Jiao, C. Yang, W. Wang, C. Xiang, and W. Wang. 2020. Event-Triggered intelligent energy management strategy for plug-in hybrid electric buses based on vehicle cloud optimisation. Iet Intelligent Transport Systems 14 (9):1153–62. doi:10.1049/iet-its.2019.0690.
  • Liu, B., C. Sun, B. Wang, W. Liang, Q. Ren, J. Li, and F. Sun. 2022. Bi-Level convex optimization of eco-driving for connected fuel cell hybrid electric vehicles through signalized intersections. Energy. 252: 123956. doi:10.1016/j.energy.2022.123956.
  • Liu, B., C. Sun, B. Wang, and F. Sun. 2022. Adaptive speed planning of connected and automated vehicles using multi-light trained deep reinforcement learning. IEEE Transactions on Vehicular Technology 71 (4):3533–46. doi:10.1109/TVT.2021.3134372.
  • Liu, T., W. Tan, X. Tang, J. Zhang, Y. Xing, and D. Cao. 2021. Driving conditions-driven energy management strategies for hybrid electric vehicles: A review. Renewable and Sustainable Energy Reviews. 151: 111521. doi:10.1016/j.rser.2021.111521.
  • Liu, T., X. Tang, H. Wang, H. Yu, and X. Hu. 2019. Adaptive hierarchical energy management design for a plug-in hybrid electric vehicle. IEEE Transactions on Vehicular Technology 68 (12):11513–22. doi:10.1109/TVT.2019.2926733.
  • Liu, T., C. Yang, C. Hu, et al. 2018. Reinforcement learning-based predictive control for autonomous electrified vehicles. proceedings of the 2018 IEEE Intelligent Vehicles Symposium, IV 2018, F, Changshu, China . Institute of Electrical and Electronics Engineers Inc. Accessed 21 October 2018.
  • Liu, Y., J. Zhao, S. Li, P. Dong, S. Wang, and X. Xu. 2021. Adaptive energy management for plug-in hybrid electric vehicles considering real-time traffic information. IFAC-PapersOnline 54 (10):138–43. doi:10.1016/j.ifacol.2021.10.154.
  • Lv, C., Y. Xing, C. Lu, et al. 2018. Hybrid-learning-based classification and quantitative inference of driver braking intensity of an electrified vehicle. IEEE Transactions on Vehicular Technology 67 (7):5718–29 Accessed 21 February 2018.
  • Ma, K. Q., Z. Z. Wang, H. Liu, et al. 2019. Numerical investigation on fuzzy logic control energy management strategy of parallel hybrid electric vehicle. Innovative Solutions for Energy Transitions 158:2643–48. Accessed 16 February 2019.
  • Martinez, C. M., X. Hu, D. Cao, E. Velenis, B. Gao, and M. Wellers. 2017. Energy management in plug-in hybrid electric vehicles: recent progress and a connected vehicles perspective. IEEE Transactions on Vehicular Technology 66 (6):4534–49. doi:10.1109/TVT.2016.2582721.
  • Min, Q., J. Li, B. Liu, et al. 2021. Guided model predictive control for connected vehicles with hybrid energy systems. Energy 230:120780.
  • Min, Q., J. Li, C. Sun, et al. 2019. Fast battery SoC trajectory planning for predictive energy management of PHEBs; proceedings of the 2019 IEEE Vehicle Power and Propulsion Conference, VPPC 2019, F, Hanoi, Vietnam [C]. Institute of Electrical and Electronics Engineers Inc. Accessed 09 January 2020.
  • Musardo, C., G. Rizzoni, Y. Guezennec, and B. Staccia. 2005. A-ECMS: An adaptive algorithm for hybrid electric vehicle energy management. European Journal of Control 11 (4–5):509–24. doi:10.3166/ejc.11.509-524.
  • Nguyen, B.-H., R. German, J. P. F. Trovao, and A. Bouscayrol. 2019. Real-time energy management of battery/supercapacitor electric vehicles based on an adaptation of pontryagin’s minimum principle. IEEE Transactions on Vehicular Technology 68 (1):203–12. doi:10.1109/TVT.2018.2881057.
  • Nguyen, H. P., A. T. Hoang, S. Nizetic, X. P. Nguyen, A. T. Le, C. N. Luong, V. D. Chu, and V. V. Pham. 2021. The electric propulsion system as a green solution for management strategy of CO 2 emission in ocean shipping: A comprehensive review. International Transactions on Electrical Energy Systems 31 (11). doi:10.1002/2050-7038.12580.
  • Pam, A., A. Bouscayrol, P. Fiani, et al. 2018. Rule-Based energy management strategy for a parallel hybrid electric vehicle deduced from dynamic programming. proceedings of the 14th IEEE Vehicle Power and Propulsion Conference, VPPC 2017, F Belfort, France [C]. Institute of Electrical and Electronics Engineers Inc. Accessed 5 April 2018.
  • Pei, H., X. Hu, Y. Yang, X. Tang, C. Hou, and D. Cao. 2018. Configuration optimization for improving fuel efficiency of power split hybrid powertrains with a single planetary gear. Applied Energy. 214: 103–16. doi:10.1016/j.apenergy.2018.01.070.
  • Peng, J., H. He, and R. Xiong. 2017. Rule based energy management strategy for a series–parallel plug-in hybrid electric bus optimized by dynamic programming. Applied Energy. 185: 1633–43. doi:10.1016/j.apenergy.2015.12.031.
  • Pozzato, G., M. Müller, S. Formentin, and S. M. Savaresi. 2020. Economic MPC for online least costly energy management of hybrid electric vehicles. Control Engineering Practice. 102: 104534. doi:10.1016/j.conengprac.2020.104534.
  • Qi, W., Y. Li, H. Li, et al. 2019. The development and numerical verification of a compromised real time optimal control algorithm for hybrid electric vehicle. Journal of Power Sources 443:227272. Accessed 11 October 2019.
  • Ren, J. K., G. D. Yu, Y. H. He, and G. Y. Li. 2019. Collaborative cloud and edge computing for latency minimization. IEEE Transactions on Vehicular Technology 68 (5):5031–44. doi:10.1109/TVT.2019.2904244.
  • Shen, P. H., Z. G. Zhao, Q. Y. Guo, et al. 2022. Development Of economic velocity planning algorithm for plug-in hybrid electric vehicle. IEEE Transactions on Intelligent Transportation Systems 23(06):5501–5513. Accessed 31 May 2022.
  • Shen, P., Z. Zhao, X. Zhan, and J. Li. 2017. Particle swarm optimization of driving torque demand decision based on fuel economy for plug-in hybrid electric vehicle. Energy. 123: 89–107. doi:10.1016/j.energy.2017.01.120.
  • Singh, K. V., H. O. Bansal, and D. Singh. 2021. Fuzzy logic and Elman neural network tuned energy management strategies for a power-split HEVs. Energy 225:120152. Accessed 1 March 2021.
  • Subramanian, M., A. T. Hoang, K. B, S. Nižetić, J. M. Solomon, D. Balasubramanian, S. C, T. G, H. Metghalchi, X. P. Nguyen, et al. 2021. A technical review on composite phase change material based secondary assisted battery thermal management system for electric vehicles. Journal of Cleaner Production 322:129079. doi:10.1016/j.jclepro.2021.129079.
  • Sun, C., S. J. Moura, X. S. Hu, J. K. Hedrick, and F. Sun. 2015. Dynamic traffic feedback data enabled energy management in plug-in hybrid electric vehicles. IEEE Transactions on Control Systems Technology 23 (3):1075–86. doi:10.1109/TCST.2014.2361294.
  • Sun, C., F. Sun, and H. He. 2017. Investigating adaptive-ECMS with velocity forecast ability for hybrid electric vehicles. Applied Energy. 185: 1644–53. doi:10.1016/j.apenergy.2016.02.026.
  • Tang, X., Z. Duan, X. Hu, H. Pu, D. Cao, and X. Lin. 2021. Improving ride comfort and fuel economy of connected hybrid electric vehicles based on traffic signals and real road information. IEEE Transactions on Vehicular Technology 70 (4):3101–12. doi:10.1109/TVT.2021.3063020.
  • Tang, X. L., T. Jia, X. S. Hu, Y. Huang, Z. Deng, and H. Pu. 2021. Naturalistic data-driven predictive energy management for plug-in hybrid electric vehicles. IEEE Transactions on Transportation Electrification 7 (2):497–508. doi:10.1109/TTE.2020.3025352.
  • Tian, H., X. Wang, Z. W. Lu, Y. Huang, and G. Tian. 2018. Adaptive fuzzy logic energy management strategy based on reasonable SOC reference curve for online control of plug-in hybrid electric city bus. IEEE Transactions on Intelligent Transportation Systems 19 (5):1607–17. doi:10.1109/TITS.2017.2729621.
  • Wang, W., X. Guo, C. Yang, et al. 2022. A multi-objective optimization energy management strategy for power split HEV based on velocity prediction. Energy 238:121714. Accessed 12 August 2021.
  • Wang, H., Y. Huang, A. Soltani, A. Khajepour, and D. Cao. 2019. Cyber-physical predictive energy management for through-the-road hybrid vehicles. IEEE Transactions on Vehicular Technology 68 (4):3246–56. doi:10.1109/TVT.2019.2902485.
  • Wang, W., K. Liu, C. Yang, B. Xu, and M. Ma. 2021. Cyber physical energy optimization control design for PHEVs based on enhanced firework algorithm. IEEE Transactions on Vehicular Technology 70 (1):282–91. doi:10.1109/TVT.2020.3046520.
  • Wang, Y., H. C. Tan, Y. K. Wu, and J. Peng. 2021. Hybrid electric vehicle energy management with computer vision and deep reinforcement learning. IEEE Transactions on Industrial Informatics 17 (6):3857–68. doi:10.1109/TII.2020.3015748.
  • Wang, L., and Z. Q. Yuan. 2021. Efficient task offloading strategy for low-energy base station groups in mobile edge computing. International Journal of Innovative Computing Information and Control 17 (5):1531–48. Accessed 26 August 2021.
  • Wang, Y., X. H. Zeng, and D. F. Song. 2020. Hierarchical optimal intelligent energy management strategy for a power-split hybrid electric bus based on driving information. Energy 199:117499. Accessed 31 March 2020.
  • Wu, J., H. He, J. Peng, Y. Li, and Z. Li. 2018. Continuous reinforcement learning of energy management with deep Q network for a power split hybrid electric bus. Applied Energy. 222: 799–811. doi:10.1016/j.apenergy.2018.03.104.
  • Wu, X., X. Hu, X. Yin, L. Li, Z. Zeng, and V. Pickert. 2019. Convex programming energy management and components sizing of a plug-in fuel cell urban logistics vehicle. Journal of Power Sources. 423: 358–66. doi:10.1016/j.jpowsour.2019.03.044.
  • Wu, X., X. Hu, X. Yin, and S. J. Moura. 2018. Stochastic optimal energy management of smart home with PEV energy storage. IEEE Transactions on Smart Grid 9 (3):2065–75. doi:10.1109/TSG.2016.2606442.
  • Wu, X., X. Hu, X. Yin, C. Zhang, and S. Qian. 2017. Optimal battery sizing of smart home via convex programming. Energy. 140: 444–53. doi:10.1016/j.energy.2017.08.097.
  • Wu, Y., H. Tan, J. Peng, H. Zhang, and H. He. 2019. Deep reinforcement learning of energy management with continuous control strategy and traffic information for a series-parallel plug-in hybrid electric bus. Applied Energy. 247: 454–66. doi:10.1016/j.apenergy.2019.04.021.
  • Wu, Y., Y. Zhang, G. Li, et al. 2020. A predictive energy management strategy for multi-mode plug-in hybrid electric vehicles based on multi neural networks. Energy 208:118366. Accessed 21 July 2020.
  • Xia, J., F. Wang, and X. Xu. 2021. A predictive energy management strategy for multi-mode plug-in hybrid electric vehicle based on long short-term memory neural network. IFAC-PapersOnline 54 (10):132–37. doi:10.1016/j.ifacol.2021.10.153.
  • Xiang, C., F. Ding, W. Wang, and W. He. 2017. Energy management of a dual-mode power-split hybrid electric vehicle based on velocity prediction and nonlinear model predictive control. Applied Energy. 189: 640–53. doi:10.1016/j.apenergy.2016.12.056.
  • Xie, S., H. He, and J. Peng. 2017. An energy management strategy based on stochastic model predictive control for plug-in hybrid electric buses. Applied Energy. 196: 279–88. doi:10.1016/j.apenergy.2016.12.112.
  • Xie, S., X. Hu, T. Liu, S. Qi, K. Lang, and H. Li. 2019. Predictive vehicle-following power management for plug-in hybrid electric vehicles. Energy. 166: 701–14. doi:10.1016/j.energy.2018.10.129.
  • Xie, S., X. Hu, Z. Xin, and J. Brighton. 2019. Pontryagin’s minimum principle based model predictive control of energy management for a plug-in hybrid electric bus. Applied Energy. 236: 893–905. doi:10.1016/j.apenergy.2018.12.032.
  • Xu, B., X. Tang, X. Hu, et al. 2021. Q-Learning-based supervisory control adaptability investigation for hybrid electric vehicles. IEEE Transactions on Intelligent Transportation Systems 23(07): 6797–6806. Accessed 04 March 2021.
  • Yan, M., M. Li, H. He, J. Peng, and C. Sun. 2018. Rule-Based energy management for dual-source electric buses extracted by wavelet transform. Journal of Cleaner Production. 189: 116–27. doi:10.1016/j.jclepro.2018.04.054.
  • Yang, C., S. Y. DU, L. Li, S. You, Y. Yang, and Y. Zhao. 2017. Adaptive real-time optimal energy management strategy based on equivalent factors optimization for plug-in hybrid electric vehicle. Applied Energy. 203: 883–96. doi:10.1016/j.apenergy.2017.06.106.
  • Yang, Y., X. Hu, H. Pei, and Z. Peng. 2016. Comparison of power-split and parallel hybrid powertrain architectures with a single electric machine: Dynamic programming approach. Applied Energy. 168: 683–90. doi:10.1016/j.apenergy.2016.02.023.
  • Yang, C., L. Li, S. X. You, B. Yan, and X. Du. 2017. Cloud computing-based energy optimization control framework for plug-in hybrid electric bus. Energy. 125: 11–26. doi:10.1016/j.energy.2017.02.102.
  • Yang, Y., H. Pei, X. Hu, Y. Liu, C. Hou, and D. Cao. 2019. Fuel economy optimization of power split hybrid vehicles: A rapid dynamic programming approach. Energy. 166: 929–38. doi:10.1016/j.energy.2018.10.149.
  • Yang, C., M. Zha, W. Wang, K. Liu, and C. Xiang. 2020. Efficient energy management strategy for hybrid electric vehicles/plug-in hybrid electric vehicles: Review and recent advances under intelligent transportation system. Iet Intelligent Transport Systems 14 (7):702–11. doi:10.1049/iet-its.2019.0606.
  • Ye, M., J. Chen, X. Li, K. Ma, and Y. Liu. 2021. Energy management strategy of a hybrid power system based on V2X vehicle speed prediction. Sensors 21 (16):5370. doi:10.3390/s21165370.
  • Zeng, T., C. Zhang, Y. Zhang, et al. 2021. Optimization-Oriented adaptive equivalent consumption minimization strategy based on short-term demand power prediction for fuel cell hybrid vehicle. Energy 227:120305.
  • Zhang, Y., C. Guo, C. Sun, et al. 2020. Cooperative charging management for electric vehicles via mobile edge computation. Journal of Power Sources 474:228533.
  • Zhang, Z., H. He, J. Guo, et al. 2020. Velocity prediction and profile optimization based real-time energy management strategy for Plug-in hybrid electric buses. Applied Energy 280: 116001.
  • Zhang, F., X. Hu, R. Langari, et al. 2021. Adaptive energy management in automated hybrid electric vehicles with flexible torque request. Energy 214:118873.
  • Zhang, F. Q., X. S. Hu, T. Liu, K. Xu, Z. Duan, and H. Pang. 2021. Computationally efficient energy management for hybrid electric vehicles using model predictive control and vehicle-to-vehicle communication. IEEE Transactions on Vehicular Technology 70 (1):237–50. doi:10.1109/TVT.2020.3045271.
  • Zhang, Y. J., Y. G. Liu, Y. J. Huang, et al. 2021. An optimal control strategy design for plug-in hybrid electric vehicles based on internet of vehicles. Energy 228:120631.
  • Zhang, Y. J., C. F. Wei, Y. G. Liu, et al. 2021. A novel optimal power management strategy for plug-in hybrid electric vehicle with improved adaptability to traffic conditions. Journal of Power Sources 489:229512.
  • Zhang, F. Q., J. Q. Xi, and R. Langari. 2017. Real-time energy management strategy based on velocity forecasts using V2V and V2I communications. IEEE Transactions on Intelligent Transportation Systems 18 (2):416–30. doi:10.1109/TITS.2016.2580318.
  • Zou, Y., T. Liu, D. Liu, and F. Sun. 2016. Reinforcement learning-based real-time energy management for a hybrid tracked vehicle. Applied Energy. 171: 372–82. doi:10.1016/j.apenergy.2016.03.082.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.