88
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Applying a neural network-based approach for estimating instantaneous emissions of the heavy-duty buses: A case study

, , , ORCID Icon, ORCID Icon &
Pages 8012-8023 | Received 31 Jan 2022, Accepted 23 Aug 2022, Published online: 05 Sep 2022

References

  • Babu, D., V. Thangarasu, and A. J. A. E. Ramanathan. 2020. Artificial neural network approach on forecasting diesel engine characteristics fuelled with waste frying oil biodiesel. Applied Energy 263:114612. doi:10.1016/j.apenergy.2020.114612.
  • Bifulco, G. N., F. Galante, L. Pariota, and M. R. Spena. 2015. A linear model for the estimation of fuel consumption and the impact evaluation of advanced driving assistance systems. Sustainability 7 (10):14326–43. doi:http://doi.org/10.3390/su71014326.
  • Bus-WebGPS, 2018. Bus operator management. Accessed May 25. http://dieuhanhxebuyt2.transerco.vn.
  • Cohen, D. D., J. Crawford, E. Stelcer, and V. T. Bac. 2010. Characterisation and source apportionment of fine particulate sources at Hanoi from 2001 to 2008. Atmospheric Environment 44 (3):320–28. doi:http://doi.org/10.1016/j.atmosenv.2009.10.037.
  • Ertuna, L. 2016. Prediction of vehicle fuel consumption using feed-forward artificial neural network model. Working Paper.
  • Faris, W. F., H. A. Rakha, R. I. Kafafy, M. Idres, and S. Elmoselhy. 2011. Vehicle fuel consumption and emission modelling: An in-depth literature review. International Journal of Vehicle Systems Modelling and Testing 6 (3–4):318–95. doi:http://doi.org/10.1504/IJVSMT.2011.044232.
  • Franco, V., M. Kousoulidou, M. Muntean, L. Ntziachristos, S. Hausberger, and P. Dilara. 2013. Road vehicle emission factors development: A review. Atmospheric Environment 70:84–97. doi:http://dx.doi.org/10.1016/j.atmosenv.2013.01.006.
  • Giakoumis, E. G. 2017. Driving and engine cycles. Gewerbestrasse 116330 Cham:Springer. https://doi.org/10.1007/978-3-319-49034-2
  • Hariharan, N., V. Senthil, M. Krishnamoorthi, and S. J. F. Karthic. 2020. Application of artificial neural network and response surface methodology for predicting and optimizing dual-fuel CI engine characteristics using hydrogen and bio fuel with water injection. Fuel 270:117576. doi:10.1016/j.fuel.2020.117576.
  • Hoang, A. T., S. Nižetić, H. C. Ong, W. Tarelko, T. H. Le, M. Q. Chau, and X. P. Nguyen. 2021. A review on application of artificial neural network (ANN) for performance and emission characteristics of diesel engine fueled with biodiesel-based fuels. Sustainable Energy Technologies and Assessments 47:101416. doi:10.1016/j.seta.2021.101416.
  • Jaliliantabar, F., B. Ghobadian, G. Najafi, and T. Yusaf. 2018. Artificial neural network modeling and sensitivity analysis of performance and emissions in a compression ignition engine using biodiesel fuel. Energies 11 (9):2410. doi:10.3390/en11092410.
  • Jaworski, A., M. Mądziel, and K. Lejda. 2019. Creating an emission model based on portable emission measurement system for the purpose of a roundabout. Environmental Science and Pollution Research 26 (21):21641–54. doi:https://doi.org/10.1007/s11356-019-05264-1.
  • Karthic, S. V., and S. K. Masimalai. 2020. Predicting the performance and emission characteristics of a Mahua oil-hydrogen dual fuel engine using artificial neural networks. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 42 (23):2891–910. doi:10.1080/15567036.2019.1618997.
  • Kim, D., and J. Lee. 2010. Application of neural network model to vehicle emissions. International Journal of Urban Sciences 14 (3):264–75. doi:10.1080/12265934.2010.9693684.
  • Le, L. T., G. Lee, K.-S. Park, and H. Kim. 2020. Neural network-based fuel consumption estimation for container ships in Korea. Maritime Policy & Management 1–18. doi:10.1080/03088839.2020.1729437.
  • Le, A.-T., M. T. Pham, T. T. Nguyen, and D. V. Nguyen. 2013. Measurements of emission factors and fuel consumption for motorcycles on a chassis dynamometer based on a localized driving cycle. ASEAN Engineering Journal Part C 1 (1):73–85. doi:10.11113/aej.v1.15332.
  • Moayedi, H., M. Mosallanezhad, A. S. A. Rashid, W. A. W. Jusoh, and M. A. Muazu. 2020. A systematic review and meta-analysis of artificial neural network application in geotechnical engineering: Theory and applications. Neural Computing & Applications 32 (2):495–518. doi:10.1007/s00521-019-04109-9.
  • Nghiem, T.-D., Y.-L.-T. Nguyen, A.-T. Le, N.-D. Bui, and H.-T. Pham. 2019. Development of the specific emission factors for buses in Hanoi, Vietnam. Environmental Science and Pollution Research 26 (23):24176–89. doi:http://doi.org/10.1007/s11356-019-05634-9.
  • Nghiem, T.-D., T. T. T. Nguyen, T. T. H. Nguyen, B.-T. Ly, K. Sekiguchi, R. Yamaguchi, C.-T. Pham, Q. B. Ho, M.-T. Nguyen, and T. N. Duong. 2020. Chemical characterization and source apportionment of ambient nanoparticles: A case study in Hanoi, Vietnam. Environmental Science and Pollution Research International 27 (24):30661–72. doi:10.1007/s11356-020-09417-5.
  • Nguyen, Y.-L.-T., T.-D. Nghiem, A.-T. Le, and N.-D. Bui. 2019. Development of the typical driving cycle for buses in Hanoi, Vietnam. Journal of the Air & Waste Management Association 69 (4):423–37. doi:10.1080/10962247.2018.1543736.
  • Nguyen, T. T., T. D. Nghiem, and T. T. Tran. 2011. Potentiality of co-benefits of climate and air quality in fuel switching for Hanoi bus system. Journal of Science and Technology 49 (4):117–28. doi:10.15625/0866-708X.
  • Perrotta, F., T. Parry, and L. C. Neves. 2017. Application of machine learning for fuel consumption modelling of trucks. Paper presented at the 2017 IEEE International Conference on Big Data (Big Data), Boston, MA, USA. doi:10.1109/BigData.2017.8258382.
  • Rao, K. P., T. V. Babu, G. Anuradha, and B. A. Rao. 2017. IDI diesel engine performance and exhaust emission analysis using biodiesel with an artificial neural network (ANN). Egyptian Journal of Petroleum 26 (3):593–600. doi:10.1016/j.ejpe.2016.08.006.
  • Sharma, A., P. K. Sahoo, R. Tripathi, and L. C. Meher. 2016. Artificial neural network-based prediction of performance and emission characteristics of CI engine using polanga as a biodiesel. International Journal of Ambient Energy 37 (6):559–70. doi:https://doi.org/10.1080/01430750.2015.1023466.
  • Song, Y.-Y., E.-J. Yao, T. Zuo, and Z.-F. Lang. 2013. Emissions and fuel consumption modeling for evaluating environmental effectiveness of ITS strategies. Discrete Dynamics in Nature and Society. 2013. doi: http://dx.doi.org/10.1155/2013/581945.
  • Thodda, G., V. R. Madhavan, and L. J. E. S. Thangavelu. 2020. Part A: recovery, utilization 2020. Predictive modelling and optimization of performance and emissions of acetylene fuelled CI engine using ANN and RSM. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–19. doi:10.1080/15567036.2020.1829191.
  • Togun, N. K., and S. Baysec. 2010. Prediction of torque and specific fuel consumption of a gasoline engine by using artificial neural networks. Applied Energy 87 (1):349–55. doi:http://doi.org/10.1016/j.apenergy.2009.08.016.
  • Trang, T. T., H. H. Van, and N. T. K. Oanh. 2015. Traffic emission inventory for estimation of air quality and climate co-benefits of faster vehicle technology intrusion in Hanoi, Vietnam. Carbon Management 6 (3–4):117–28. doi:http://dx.doi.org/10.1080/17583004.2015.1093694.
  • Tung, H. D., H. Y. Tong, W. T. Hung, and N. T. N. Anh. 2011. Development of emission factors and emission inventories for motorcycles and light duty vehicles in the urban region in Vietnam. The Science of the Total Environment 409 (14):2761–67. doi:http://doi.org/10.1016/j.scitotenv.2011.04.013.
  • Wang, X., G. Song, Z. Zhai, Y. Wu, H. Yin, L. Yu, and P. Health. 2021. Effects of vehicle load on emissions of heavy-duty diesel trucks: A study based on real-world data. International Journal of Environmental Research and Public Health 18 (8):3877. doi:10.3390/ijerph18083877.
  • Wei, S., T. Ding, S. Zhang, P. Tao, and J. Chen. 2020. Analysis of vehicle CO and NOx road emissions test based on PEMS. Journal Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–15. doi:10.1080/15567036.2020.1781300.
  • Zare, M., H. R. Pourghasemi, M. Vafakhah, and B. Pradhan. 2013. Landslide susceptibility mapping at vaz watershed (Iran) using an artificial neural network model: A comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms. Arabian Journal of Geosciences 6 (8):2873–88. doi:10.1007/s12517-012-0610-x.
  • Zhang, J.-R., J. Zhang, T.-M. Lok, and M. R. Lyu. 2007. A hybrid particle swarm optimization–back-propagation algorithm for feedforward neural network training. Applied Mathematics and Computation 185 (2):1026–37. doi:10.1016/j.amc.2006.07.025.
  • Zheng, H., H. Zhou, C. Kang, Z. Liu, Z. Dou, J. Liu, B. Li, and Y. Chen. 2021. Modeling and prediction for diesel performance based on deep neural network combined with virtual sample. Scientific Reports 11 (1):1–17. doi:10.1038/s41598-021-96259-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.