163
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Evaporative pre-cooling of a condenser airflow: investigation of nozzle cone angle, spray inclination angle and nozzle location

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 8040-8059 | Received 28 Mar 2022, Accepted 06 Aug 2022, Published online: 04 Sep 2022

References

  • Alkhedhair, A., H. Gurgenci, I. Jahn, Z. Guan, and S. He. 2013. Numerical simulation of water spray for pre-cooling of inlet air in natural draft dry cooling towers. Applied Thermal Engineering 61 (2):416–24. doi:10.1016/j.applthermaleng.2013.08.012.
  • Amoli, B. S., S. S. M. Ajarostaghi, K. Sedighi, and M. A. Delavar 2021. Thermal analysis on the impact of spray charactristics on evaporative cooling process. Journal of Thermal Engineering 8 (1):90–102.
  • Chaker, M. A. 2005. Key parameters for the performance of impaction-pin nozzles used in inlet fogging of gas turbine engines. Turbo Expo: Power for Land, Sea, and Air 4(1): 91–97. https://asmedigitalcollection.asme.org/GT/proceedings-abstract/GT2005/91/312507
  • Dhamneya, A. K., S. Rajput, and A. Singh. 2018.Theoretical performance analysis of window air conditioner combined with evaporative cooling for better indoor thermal comfort and energy saving. Journal of Building Engineering 17: 52–64. doi:10.1016/j.jobe.2018.01.012
  • Fiorentino, M., and G. Starace. 2018.The design of countercurrent evaporative condensers with the hybrid method. Applied Thermal Engineering 130: 889–98. doi:10.1016/j.applthermaleng.2017.11.076
  • Grich, N., W. Foudhil, S. Harmand, and S. B. Jabrallah. 2021. Numerical simulation of water spray transport along a plate of a heat exchanger. Journal of Thermal Analysis and Calorimetry 143 (5):3887–95. doi:10.1007/s10973-020-09356-w.
  • Haider, A., and O. Levenspiel. 1989. Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technology 58 (1):63–70. doi:10.1016/0032-5910(89)80008-7.
  • Heidarinejad, G., M. R. A. A. Moghaddam, and H. Pasdarshahri. 2019.Enhancing COP of an air-cooled chiller with integrating a water mist system to its condenser: Investigating the effect of spray nozzle orientation. International Journal of Thermal Sciences 137: 508–25. doi:10.1016/j.ijthermalsci.2018.12.013
  • Hou, Y., Y. Tao, X. Huai, Y. Zou, and D. Sun. 2018.Numerical simulation of multi-nozzle spray cooling heat transfer. International Journal of Thermal Sciences 125: 81–88. doi:10.1016/j.ijthermalsci.2017.11.011
  • Huang, X., W. Wang, L. Chen, L. Yang, and X. Du. 2020.Performance analyses of a combined natural draft hybrid cooling system with serial airflow path. International Journal of Heat and Mass Transfer 159: 120073. doi:10.1016/j.ijheatmasstransfer.2020.120073
  • Husted, B. P. 2007. Experimental measurements of water mist systems and implications for modelling i CFD. Sweden: Department of Fire Safety Engineering, Lund University.
  • Kachhwaha, S., P. Dhar, and S. Kale. 1998. Experimental studies and numerical simulation of evaporative cooling of air with a water spray—I.horizontal parallel flow. International Journal of Heat and Mass Transfer 41 (2):447–64. doi:10.1016/S0017-9310(97)00133-6.
  • Karna, S. K., and R. Sahai. 2012. An overview on Taguchi method. International Journal of Engineering and Mathematical Sciences 1 (1):1–7.
  • Kelbaliyev, G., and K. Ceylan. 2007. Development of new empirical equations for estimation of drag coefficient, shape deformation, and rising velocity of gas bubbles or liquid drops. Chemical Engineering Communications 194 (12):1623–37. doi:10.1080/00986440701446128.
  • Khan, A., and J. Richardson. 1987. The resistance to motion of a solid sphere in a fluid. Chemical Engineering Communications 62 (1–6):135–50. doi:10.1080/00986448708912056.
  • Li, J., and H. Kawano. 1995. Simulating water-drop movement from noncircular sprinkler nozzles. Journal of Irrigation and Drainage Engineering 121 (2):152–58. doi:10.1061/(ASCE)0733-9437(1995)121:2(152).
  • Li, W.-Y., Y.-C. Li, L.-Y. Zeng, and J. Lu. 2018.Comparative study of vertical and horizontal indirect evaporative cooling heat recovery exchangers. International Journal of Heat and Mass Transfer 124: 1245–61. doi:10.1016/j.ijheatmasstransfer.2018.04.041
  • Montazeri, H., B. Blocken, and J. L. Hensen. 2015.CFD analysis of the impact of physical parameters on evaporative cooling by a mist spray system. Applied Thermal Engineering 75: 608–22. doi:10.1016/j.applthermaleng.2014.09.078
  • Morsi, S., and A. Alexander. 1972. An investigation of particle trajectories in two-phase flow systems. Journal of Fluid Mechanics 55 (2):193–208. doi:10.1017/S0022112072001806.
  • Palaszewski, S., L. Jiji, and S. Weinbaum. 1981. A three-dimensional air-vapor-droplet local interaction model for spray units. Journal of Heat Transfer 103 (3):514–21. doi:10.1115/1.3244494.
  • Ranz, W. 1952. Evaporation from drops part II. ChemIical Engineering Progress 48:173.
  • Raoult, F., S. Lacour, B. Carissimo, F. Trinquet, A. Delahaye, and L. Fournaison. 2019.CFD water spray model development and physical parameter study on the evaporative cooling. Applied Thermal Engineering 149: 960–74. doi:10.1016/j.applthermaleng.2018.12.063
  • Sadafi, M., I. Jahn, and K. Hooman. 2016.Nozzle arrangement effect on cooling performance of saline water spray cooling. Applied Thermal Engineering 105: 1061–66. doi:10.1016/j.applthermaleng.2016.01.078
  • Simpson, J. R. 1996. Taguchi techniques for quality engineering. United Kingdom:Taylor & Francis. https://www.tandfonline.com/doi/abs/10.1080/00224065.1996.11979713
  • Singh, S., and R. Kukreja. 2021. Experimental study on effects of surfactant and spray inclination on heat transfer performance in nonboiling regime. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 43(24): 1–15. https://www.tandfonline.com/doi/abs/10.1080/15567036.2021.2007313
  • Sun, Y., Z. Guan, H. Gurgenci, K. Hooman, X. Li, and L. Xia. 2017.Investigation on the influence of injection direction on the spray cooling performance in natural draft dry cooling tower. International Journal of Heat and Mass Transfer 110: 113–31. doi:10.1016/j.ijheatmasstransfer.2017.02.069
  • Sun, Y., Z. Guan, H. Gurgenci, J. Wang, P. Dong, and K. Hooman 2019. Spray cooling system design and optimization for cooling performance enhancement of natural draft dry cooling tower in concentrated solar power plants. Energy. 168:273–84.
  • Wang, J.-X., Y.-Z. Li, X.-K. Yu, G.-C. Li, and X.-Y. Ji. 2018.Investigation of heat transfer mechanism of low environmental pressure large-space spray cooling for near-space flight systems. International Journal of Heat and Mass Transfer 119: 496–507. doi:10.1016/j.ijheatmasstransfer.2017.11.128
  • Yang, H., N. Pei, M. Fan, L. Liu, and D. Wang. 2021.Experimental study on an air-cooled air conditioning unit with spray evaporative cooling system. International Journal of Refrigeration 131: 645–56. doi:10.1016/j.ijrefrig.2021.06.011
  • Yu, J.-C., and K. Ishii. 1998. Design optimization for robustness using quadrature factorial models. Engineering Optimization 30 (3–4):203–25. doi:10.1080/03052159808941244.
  • Zhang, Z., S. He, M. Yan, M. Gao, Y. Shi, Y. Lu, J. Liu, C. Guo, and X. Huang. 2020.Numerical study on the performance of a two-nozzle spray cooling system under different conditions. International Journal of Thermal Sciences 152: 106291. doi:10.1016/j.ijthermalsci.2020.106291

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.