136
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Impact of high-velocity primary air on combustion and NOx emission performance of a novel swirling W-shaped boiler: A numerical simulation combined with industrial experiment verification

ORCID Icon, , , &
Pages 7986-8000 | Received 21 Jun 2022, Accepted 19 Aug 2022, Published online: 31 Aug 2022

References

  • Adamczyk, W. P., S. Werle, and A. Ryfa. 2014. Application of the computational method for predicting NOx reduction within large scale coal-fired boiler. Applied Thermal Engineering 73 (1):343–50. doi:10.1016/j.applthermaleng.2014.07.045.
  • Chen, Z. C., Q. X. Wang, X. Y. Zhang, L. Y. Zeng, X. Zhang, T. He, T. Liu, and Z. Q. Li. 2017. Industrial scale investigations of anthracite combustion characteristics and NOx emissions in a retrofitted 300 MWe down-fired utility boiler with swirl burners. Applied Energy 202:169–77. doi:10.1016/j.apenergy.2017.05.138.
  • Chen, T., Y. D. Zhou, B. Wang, W. L. Deng, Z. J. Song, W. Li, W. Yang, and L. S. Sun. 2020. Investigations on combustion optimization and NOx reduction of a 600-MWe down-fired boiler: Influence of rearrangement of tertiary air and jet angle of secondary air and separated over-fire air. Journal of Cleaner Production 277:124310. doi:10.1016/j.jclepro.2020.124310.
  • Choi, C. R., and C. N. Kim. 2009. Numerical investigation on the flow, combustion and NOx emission characteristics in a 500mwe tangentially fired pulverized-coal boiler. Fuel 88 (9):1720–31. doi:10.1016/j.fuel.2009.04.001.
  • Fan, J. R., X. D. Zha, and K. F. Cen. 2001. Study on coal combustion characteristics in a W-shaped boiler furnace. Fuel 80 (3):373–81. doi:10.1016/S0016-2361(00)00098-3.
  • Fang, Q. Y., H. J. Wang, H. C. Zhou, L. Lei, and X. N. Duan. 2010. Improving the performance of a 300 MW down-fired pulverized-coal utility boiler by inclining downward the F-layer secondary air. Energy & Fuels 24 (9):4857–65. doi:10.1021/ef1005868.
  • Fenimo, C. P. 1972. Formation of nitric oxide from fuel nitrogen in ethylene flames. Combustion & Flame 19 (2):289–96. doi:10.1016/S0010-2180(72)80219-0.
  • Field, M. A. 1969. Rate of combustion of size-graded fractions of char from a low-rank coal between 1 200°K and 2 000°K. Combustion and Flame 13 (3):237–52. doi:10.1016/0010-2180(69)90002-9.
  • Gao, Z. Y., X. Z. Sun, W. Song, and L. J. Fang. 2009. Numerical simulation of the effect of down-fired boiler structure on flame. Proceedings of the CSEE 29:13–18.
  • He, P. A., Z. H. Zhao, and Y. K. Qin. 1987. Design and operation of pulverized coal burner. Beijing: Machinery Industry Press.
  • Karlström, O., A. Brink, E. Biagini, M. Hupa, and L. Tognotti. 2013. Comparing reaction orders of anthracite chars with bituminous coal chars at high temperature oxidation conditions. Proceedings of the Combustion Institute 34 (2):2427–34. doi:10.1016/j.proci.2012.07.011.
  • Kobayashi, H., J. B. Howard, and A. F. Sarofim. 1977. Coal devolatilization at high temperatures. Symposium (International) on Combustion 16 (1):411–25. doi:10.1016/S0082-0784(77)80341-X.
  • Kuang, M., and Z. Q. Li. 2014. Review of gas/particle flow, coal combustion, and NOx emission characteristics within down-fired boilers. Energy 69:144–78. doi:10.1016/j.energy.2014.03.055.
  • Kuang, M., G. H. Yang, Q. Y. Zhu, S. G. Ti, and Z. F. Wang. 2017. Effect of burner location on flow-field deflection and asymmetric combustion in a 600 MWe supercritical down-fired boiler. Applied Energy 206:1393–405. doi:10.1016/j.apenergy.2017.09.121.
  • Li, Z. Q., F. Ren, J. Zhang, X. H. Zhang, Z. C. Chen, and L. Z. Chen. 2007. Influence of vent air valve opening on combustion characteristics of a down-fired pulverized-coal 300 MWe utility boiler. Fuel 86 (15):2457–62. doi:10.1016/j.fuel.2007.01.035.
  • Liang, L., S. E. Hui, S. Zhao, Q. L. Zhou, T. M. Xu, and Q. X. Zhao. 2012. Cold modelling investigation of aerodynamic characteristics of an arch-fired boiler on particle image velocimetry (PIV): Influence of momentum flux ratio of arch air to secondary air and secondary air angle. Experimental Thermal and Fluid Science 42:240–47. doi:10.1016/j.expthermflusci.2012.05.009.
  • Liu, P. Y., J. J. Gao, H. Zhang, D. L. Zhang, Y. X. Wu, M. Zhang, and J. F. Lu. 2017. Performance of the primary air concentrators on anthracite ignition and combustion in a 600 MW supercritical arch-fired boiler. Fuel Processing Technology 158:172–79. doi:10.1016/j.fuproc.2016.12.020.
  • Liu, R. W., S. E. Hui, Z. Y. Yu, Q. L. Zhou, T. M. Xu, Q. X. Zhao, and H. Z. Tan. 2010. Effect of air distribution on aerodynamic field and coal combustion in an arch-fired furnace. Energy & Fuels 24 (10):5514–23. doi:10.1021/ef1006935.
  • Liu, G. K., Z. Q. Li, Z. C. Chen, X. Y. Zhu, and Q. Y. Zhu. 2012. Effect of the anthracite ratio of blended coals on the combustion and NOx emission characteristics of a retro-fitted down-fired 660-MWe utility boiler. Applied Energy 95:196–201. doi:10.1016/j.apenergy.2012.02.031.
  • Ma, L., Q. Y. Fang, D. Z. Lv, C. Zhang, Y. P. Chen, G. Chen, X. N. Duan, and X. H. Wang. 2015. Reducing NO x emissions for a 600 MW e down-fired pulverized-coal utility boiler by applying a novel combustion system. Environmental Science & Technology 49 (21):13040–49. doi:10.1021/acs.est.5b02827.
  • Ma, L., Q. Y. Fang, P. Tan, C. Zhang, G. Chen, D. Z. Lv, X. N. Duan, and Y. P. Chen. 2016. Effect of the separated overfire air location on the combustion optimization and NOx reduction of a 600 MWe FW down-fired utility boiler with a novel combustion system. Applied Energy 180:104–15. doi:10.1016/j.apenergy.2016.07.102.
  • Ma, L., Q. Y. Fang, C. G. Yin, H. J. Wang, C. Zhang, and G. Chen. 2019. A novel corner-fired boiler system of improved efficiency and coal flexibility and reduced NOx emissions. Applied Energy 238:453–65. doi:10.1016/j.apenergy.2019.01.084.
  • Ni, P. Y., and X. L. Wang. 2012. Modeling the formation of No x and Soot emissions in a diesel engine at different humidity. International Journal of Green Energy 9 (8):815–28. doi:10.1080/15435075.2011.641701.
  • Ouyang, Z. Q., J. G. Zhu, and Q. G. Lu. 2013. Experimental study on preheating and combustion characteristics of pulverized anthracite coal. Fuel 113:122–27. doi:10.1016/j.fuel.2013.05.063.
  • Ren, F., Z. Q. Li, Z. C. Chen, J. J. Wang, and C. Chen. 2009. Influence of the down-draft secondary air on the furnace aerodynamic characteristics of a down-fired boiler. Energy & Fuels 23 (5):2437–43. doi:10.1021/ef8010146.
  • Song, M. H., L. Y. Zeng, Z. C. Chen, Z. Q. Li, Q. Y. Zhu, and M. Kuang. 2016. Industrial application of an improved multiple injection and multiple staging combustion technology in a 600 MW e supercritical down-fired boiler. Environmental Science & Technology 50 (3):1604–10. doi:10.1021/acs.est.5b03976.
  • Staiger, B., S. Unterberger, R. Berger, and K. R. G. Hein. 2005. Development of an air staging technology to reduce NOx emissions in grate fired boilers. Energy 30 (8):1429–38. doi:10.1016/j.energy.2004.02.013.
  • Steer, J., M. Marsh, A. Griffiths, A. Malmgren, and G. Riley. 2013. Biomass co-firing trials on a down-fired utility boiler. Energy Conversion and Management 66:285–94. doi:10.1016/j.enconman.2012.10.010.
  • Wang, Q. X., Z. C. Chen, M. M. Che, L. Y. Zeng, Z. Q. Li, and M. H. Song. 2016. Effect of different inner secondary-air vane angles on combustion characteristics of primary combustion zone for a down-fired 300-MWe utility boiler with overfire air. Applied Energy 182:29–38. doi:10.1016/j.apenergy.2016.08.127.
  • Wang, Q. X., Z. H. Chen, L. K. Li, L. Y. Zeng, and Z. Q. Li. 2020. Achievement in ultra-low-load combustion stability for an anthracite and down-fired boiler after applying novel swirl burners: From laboratory experiments to industrial applications. Energy 192:116623. doi:10.1016/j.energy.2019.116623.
  • Wang, Q. X., Z. C. Chen, L. Wang, L. Y. Zeng, and Z. Q. Li. 2018b. Application of eccentric-swirl-secondary-air combustion technology for high-efficiency and low-NOx performance on a large-scale down-fired boiler with swirl burners. Applied Energy 223:358–68. doi:10.1016/j.apenergy.2018.04.064.
  • Wang, Q. X., Z. C. Chen, J. Q. Wang, L. Y. Zeng, X. Zhang, X. G. Li, and Z. Q. Li. 2018. Effects of secondary air distribution in primary combustion zone on combustion and NOx emissions of a large-scale down-fired boiler with air staging. Energy 165:339–410. doi:10.1016/j.energy.2018.09.194.
  • Wang, Q. X., Z. H. Chen, T. S. Yan, T. Liu, L. Y. Zeng, and Z. Q. Li. 2018a. Promotion of anthracite burnout for a 300 MWe down-fired boiler with a novel combustion technology. Energy & Fuels 32 (11):11924–35. doi:10.1021/acs.energyfuels.8b02641.
  • Wang, W. S., J. Liu, B. W. Wang, M. Y. Yao, and J. Y. Wang. 2011. Study on NOx emission law of anthracite combustion in 600 MW supercritical W-flame boiler. Journal of China Coal Society 36:993–98. doi:10.1007/s12583-011-0163-z.
  • Wei, X. L., T. M. Xu, and S. E. Hui. 2004. Burning low volatile fuel in tangentially fired furnaces with fuel rich/lean burners. Energy Conversion and Management 45 (5):725–35. doi:10.1016/S0196-8904(03)00183-3.
  • Yang, W., B. Wang, S. Y. Lei, K. Wang, T. Chen, Z. J. Song, C. Ma, Y. D. Zhou, and L. S. Sun. 2019. Combustion optimization and NOx reduction of a 600 MWe down-fired boiler by rearrangement of swirl burner and introduction of separated over-fire air. Journal of Cleaner Production 210:1120–30. doi:10.1016/j.jclepro.2018.11.077.
  • Yang, W. J., Z. J. Zhou, W. C. Yang, J. H. Zhou, Z. H. Wang, J. Z. Liu, and K. F. Cen. 2014. Combustion and NO x emission characteristics of a down-fired furnace with the hot air packing combustion technology. Energy & Fuels 28 (1):439–46. doi:10.1021/ef4018652.
  • Yin, C. G. 2015. On gas and particle radiation in pulverized fuel combustion furnaces. Applied Energy 157:554–61. doi:10.1016/j.apenergy.2015.01.142.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.