178
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Experimental study on the macroscopic characteristics of air-assisted diesel spray

, ORCID Icon, , , , , , & show all
Pages 8109-8120 | Received 03 Mar 2022, Accepted 26 Aug 2022, Published online: 06 Sep 2022

References

  • Agarwal, A. K., A. P. Singh, R. K. Maurya, P. C. Shukla, A. Dhar, and D. K. Srivastava. 2018. Combustion characteristics of a common rail direct injection engine using different fuel injection strategies. International Journal of Thermal Sciences 134:475–84. doi:10.1016/j.ijthermalsci.2018.07.001.
  • Balasubramanian, D., T. Wongwuttanasatian, I. P. Venugopal, and A. Rajarajan. 2022. Exploration of combustion behavior in a compression ignition engine fuelled with low-viscous Pimpinella anisum and waste cooking oil biodiesel blends. Journal of Cleaner Production 331:129999. doi:10.1016/j.jclepro.2021.129999.
  • Begg, S., F. Kaplanski, S. Sazhin, M. Hindle, and M. Heikal. 2009. Vortex ring-like structures in gasoline fuel sprays under cold-start conditions. International Journal of Engine Research 10 (4):195–214. doi:10.1243/14680874JER02809.
  • Berni, F., S. Fontanesi, L. Postrioti, A. Cavicchi, and G. Brizi. 2018. Experimental and numerical analysis of spray evolution, hydraulics and atomization for a 60 MPa injection pressure GDI system. SAE Technical Paper 2018-01-0271.
  • Cathcart, G., G. Dickson, and S. Ahern. 2005. The application of air-assist direct injection for spark-ignited heavy fuel 2-stroke and 4-stroke engines. SAE Technical Paper.
  • Cathcart, G., and C. Zavier. 2000. Fundamental characteristics of an air-assisted direct injection combustion system as applied to 4-stroke automotive gasoline engines. SAE Technical Paper.
  • Chen, Z., B. Liao, Y. Yu, and T. Qin. 2022. Effect of equivalence ratio on spark ignition combustion of an air-assisted direct injection heavy-fuel two-stroke engine. Fuel 313:122646. doi:10.1016/j.fuel.2021.122646.
  • Chen, P. C., W. Wang, W. L. Roberts, and T. Fang. 2013. Spray and atomization of diesel fuel and its alternatives from a single-hole injector using a common rail fuel injection system. Fuel 103:850–61. doi:10.1016/j.fuel.2012.08.013.
  • Du, B., and Z. Zhao. 2022. Experimental investigation on the effects of injection parameters on the air-assisted diesel spray characteristics. International Journal of Aerospace Engineering 2022:1–21. doi:10.1155/2022/6814732.
  • Ganesan, N., T. H. Le, P. Ekambaram, D. Balasubramanian, V. V. Le, and A. T. Hoang. 2022. Experimental assessment on performance and combustion behaviors of reactivity-controlled compression ignition engine operated by n-pentanol and cottonseed biodiesel. Journal of Cleaner Production 330:129781. doi:10.1016/j.jclepro.2021.129781.
  • Gao, H., F. Zhang, Z. Zhang, E. Wang, and B. Liu. 2019. Experimental investigation on the spray characteristic of air-assisted hollow-cone gasoline injector. Applied Thermal Engineering 151:354–63. doi:10.1016/j.applthermaleng.2019.02.029.
  • Gao, H., F. Zhang, Z. Zhang, S. Wang, and H. Wu. 2019. Trajectory deviation of target jet of air-assisted spray under different conditions. Fuel 249:252–63. doi:10.1016/j.fuel.2019.03.112.
  • Hoang, A. 2020. Critical review on the characteristics of performance, combustion and emissions of PCCI engine controlled by early injection strategy based on narrow-angle direct injection (NADI). Energy Sources Part A, Recovery, Utilization, and Environmental Effects 1–15. doi:10.1080/15567036.2020.1805048.
  • Hoang, A., A. T. Le, and V. V. Pham. 2019. A core correlation of spray characteristics, deposit formation, and combustion of a high-speed diesel engine fueled with Jatropha oil and diesel fuel. Fuel 244:159–75. doi:10.1016/j.fuel.2019.02.009.
  • Hoang, A., and M. T. Pham. 2018. Influences of heating temperatures on physical properties, spray characteristics of bio-oils and fuel supply system of a conventional diesel engine. International Journal on Advanced Science, Engineering and Information Technology 8 (5):2231. doi:10.18517/ijaseit.8.5.5487.
  • Hu, J., B. Liu, C. Zhao, H. Gao, Z. Zhao, F. Zhang, and Y. Wang. 2019. Experimental study on the spray characteristics of an air-assisted fuel injection system using kerosene and gasoline. Fuel 235:782–94. doi:10.1016/j.fuel.2018.08.083.
  • Kourmatzis, A., P. X. Pham, and A. R. Masri. 2013. Air assisted atomization and spray density characterization of ethanol and a range of biodiesels. Fuel 108:758–70. doi:10.1016/j.fuel.2013.01.069.
  • Lee, S., and S. Park. 2014. Experimental study on spray break-up and atomization processes from GDI injector using high injection pressure up to 30mpa. International Journal of Heat and Fluid Flow 45:14–22. doi:10.1016/j.ijheatfluidflow.2013.11.005.
  • Li, F., C. Lee, Z. Wang, F. Liu, and G. Lu. 2020. Optical investigation on impacts of ambient pressure on macroscopic spray characteristics of ducted fuel injection under non-vaporizing conditions. Fuel 268:117192. doi:10.1016/j.fuel.2020.117192.
  • Liu, R., M. Wei, and H. Yang. 2016. Cold start control strategy for a two-stroke spark ignition diesel-fuelled engine with air-assisted direct injection. Applied Thermal Engineering 108:414–26. doi:10.1016/j.applthermaleng.2016.07.148.
  • Liu, F., Z. Zhang, H. Wu, Y. Li, Y. Ma, X. Li, and W. Du. 2017. An investigation on a diesel jet’s ignition characteristics under cold-start conditions. Applied Thermal Engineering 121:511–19. doi:10.1016/j.applthermaleng.2017.04.133.
  • Nayak, S. K., A. T. Hoang, S. Nižetić, X. P. Nguyen, and T. H. Le. 2022. Effects of advanced injection timing and inducted gaseous fuel on performance, combustion and emission characteristics of a diesel engine operated in dual-fuel mode. Fuel 310:122232. doi:10.1016/j.fuel.2021.122232.
  • Park, J., T. Kim, D. Kim, and S. Park. 2018. Prediction of wall impingement in a direct injection spark ignition engine by analyzing spray images for high-pressure injection up to 50 mpa. Fuel Processing Technology 179:238–49. doi:10.1016/j.fuproc.2018.07.002.
  • Sureshkumar, J., R. Elayaraja, J. M. Mallikarjuna, and G. Venkitachalam. 2015. Transient spray characteristics of air assisted fuel injection. SAE Technical Paper.
  • Venugopal, I. P., D. Balasubramanian, and A. Rajarajan. 2021. Potential improvement in conventional diesel combustion mode on a common rail direct injection diesel engine with PODE/WCO blend as a high reactive fuel to achieve effective Soot-NOx trade-off. Journal of Cleaner Production 327:129495. doi:10.1016/j.jclepro.2021.129495.
  • Vigneswaran, R., D. Balasubramanian, and B. D. S. Sastha. 2021. Performance, emission and combustion characteristics of unmodified diesel engine with titanium dioxide (TiO2) nano particle along with water-in-diesel emulsion fuel. Fuel 285:119115. doi:10.1016/j.fuel.2020.119115.
  • Wang, C., A. Sahu, C. Coratella, C. Xu, J. Saul, and H. Xu. 2019. Spray characteristics of a gasoline-diesel blend (ULG75) using high-speed imaging techniques. Fuel 239:677–92. doi:10.1016/j.fuel.2018.10.135.
  • Wu, H., L. Wang, Y. Wu, B. Sun, Z. Zhao, and F. Liu. 2019. Spray performance of air-assisted kerosene injection in a constant volume chamber under various in-cylinder GDI engine conditions. Applied Thermal Engineering 150:762–69. doi:10.1016/j.applthermaleng.2019.01.014.
  • Wu, H., F. Zhang, and Z. Zhang. 2021. Fundamental spray characteristics of air-assisted injection system using aviation kerosene. Fuel 286:119420. doi:10.1016/j.fuel.2020.119420.
  • Wu, H., F. Zhang, Z. Zhang, Z. Guo, W. Zhang, and H. Guo. 2020. On the role of vortex-ring formation in influencing air-assisted spray characteristics of n-heptane. Fuel 266:117044. doi:10.1016/j.fuel.2020.117044.
  • Yang, B., Q. Duan, B. Liu, and K. Zeng. 2020. Parametric investigation of low pressure dual-fuel direct injection on the combustion performance and emissions characteristics in a RCCI engine fueled with diesel and CH4. Fuel 260:116408. doi:10.1016/j.fuel.2019.116408.
  • Yang, W., X. Li, Y. Kang, H. Zuo, and F. Liu. 2019. Evaluating the scavenging process by the scavenging curve of an opposed-piston, two-stroke (OP2S) diesel engine. Applied Thermal Engineering 147:336–46. doi:10.1016/j.applthermaleng.2018.10.095.
  • Zhu, S., Z. Ma, K. Zhang, and K. Deng. 2020. Energy and exergy analysis of a novel steam injected turbo compounding system applied on the marine two-stroke diesel engine. Energy Conversion and Management 221:113207. doi:10.1016/j.enconman.2020.113207.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.