190
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Application of nanotechnology in anaerobic digestion for biohydrogen production improvement from natural coagulation/flocculation sludge using metallic oxide nanoparticles

, , , , , & show all
Pages 8184-8197 | Received 09 May 2022, Accepted 23 Aug 2022, Published online: 06 Sep 2022

References

  • Abdelsalam, E., M. Samer, Y.A. Attia, M.A. Abdel-Hadi, H.E. Hassan, and Y. Badr. 2017.Effects of Co and Ni nanoparticles on biogas and methane production from anaerobic digestion of slurry. Energy Convers Manag 141: 108–19.doi: 10.1016/j.enconman.2016.05.051
  • Ali, M.S., R.A. Tuhin, and K. Msh. Sun: The main source of ground energy and power. Advances in Clean Energy Technologies 2021:3–18. doi:10.1016/B978-0-12-821221-9.00001-3.
  • Al-Taweel, S.S., and H.R. Saud. 2016. New route for synthesis of pure anatase TiO2 nanoparticles via ultrasound-assisted sol-gel method. Journal of Chemical and Pharmaceutical Research 8:620–26.
  • Amen, T.W.M., O. Eljamal, A.M.E. Khalil, Y. Sugihara, and N. Matsunaga. 2018.Methane yield enhancement by the addition of new novel of iron and copper-iron bimetallic nanoparticles. Chemical Engineering and Processing - Process Intensification 130: 253–61.doi: 10.1016/j.cep.2018.06.020
  • Azhgaliyeva, D. 2019.Energy storage and renewable energy deployment: Empirical Evidence from OECD countries. Energy Procedia 158: 3647–51.doi: 10.1016/j.egypro.2019.01.897
  • Bouchareb, E.M., D. Kerroum, E. Bezirhan Arikan, Z. Isik, and N. Dizge. 2021. Production of bio-hydrogen from bulgur processing industry wastewater. Energy Sources, Part a Recover Util Environ Eff 1–14. doi:10.1080/15567036.2021.1877853.
  • Etefagh, R., E. Azhir, and N. Shahtahmasebi. 2013. Synthesis of CuO nanoparticles and fabrication of nanostructural layer biosensors for detecting Aspergillus niger fungi. Sci Iran 20:1055–58. https://www.sciencedirect.com/science/article/pii/S1026309813000977.
  • Farghali, M., F.J. Andriamanohiarisoamanana, M.M. Ahmed, S. Kotb, T. Yamashiro, M. Iwasaki, et al. 2019. Impacts of iron oxide and titanium dioxide nanoparticles on biogas production: Hydrogen sulfide mitigation, process stability, and prospective challenges. Journal of Environmental Management 240:160–67. doi:10.1016/j.jenvman.2019.03.089.
  • Ji, M., and J. Wang. 2021. Review and comparison of various hydrogen production methods based on costs and life cycle impact assessment indicators. International Journal of Hydrogen Energy 46 (78):38612–35. doi:10.1016/J.IJHYDENE.2021.09.142.
  • Kumar, G., T. Mathimani, E.R. Rene, and A. Pugazhendhi. 2019. Application of nanotechnology in dark fermentation for enhanced biohydrogen production using inorganic nanoparticles. International Journal of Hydrogen Energy 44 (26):13106–13. doi:10.1016/j.ijhydene.2019.03.131.
  • Kumar, G., P. Sivagurunathan, A. Pugazhendhi, N.B.D. Thi, G. Zhen, K. Chandrasekhar, et al. 2017. A comprehensive overview on light independent fermentative hydrogen production from wastewater feedstock and possible integrative options. Energy Conversion and Management 141:390–402. doi:10.1016/j.enconman.2016.09.087.
  • Lassoued, A., B. Dkhil, A. Gadri, and S. Ammar. 2017.Control of the shape and size of iron oxide (α-Fe2O3) nanoparticles synthesized through the chemical precipitation method. Results Physics 7: 3007–15.doi: 10.1016/j.rinp.2017.07.066
  • Lee, K.S., S.L. Chen, C.Y. Lin, and J.S. Chang. 2021. Converting waste molasses liquor into biohydrogen via dark fermentation using a continuous bioreactor. International Journal of Hydrogen Energy 46 (31):16546–54. doi:10.1016/j.ijhydene.2021.02.101.
  • Łukajtis, R., I. Hołowacz, K. Kucharska, M. Glinka, P. Rybarczyk, A. Przyjazny, and M. Kamiński. 2018.Hydrogen production from biomass using dark fermentation. Renewable and Sustainable Energy Reviews 91: 665–94.doi: 10.1016/J.RSER.2018.04.043
  • Malik, S.N., Rena, S. Kumar. 2021. Enhancement effect of zero-valent iron nanoparticle and iron oxide nanoparticles on dark fermentative hydrogen production from molasses-based distillery wastewater. International Journal of Hydrogen Energy 46 (58):29812–21. doi:10.1016/j.ijhydene.2021.06.125.
  • Mishra, P., L. Singh, M. Amirul Islam, M. Nasrullah, A.M. Mimi Sakinah, and Z.A. Wahid. 2019.NiO and CoO nanoparticles mediated biological hydrogen production: Effect of Ni/Co oxide NPs-ratio. Bioresour Technol Reports 5: 364–68.doi: 10.1016/j.biteb.2018.02.004
  • Mishra, P., L. Singh, M.A. Islam, M. Nasrullah, A.M.M. Sakinah, Z.A. Wahid, and Sc. 2018. #pagerange#. 10.1016/j.biteb.2018.02.004.
  • Mullai, P., M.K. Yogeswari, and K. Sridevi. 2013.Bioresource technology optimisation and enhancement of biohydrogen production using nickel nanoparticles – a novel approach. Bioresource Technology 141: 212–19.doi: 10.1016/j.biortech.2013.03.082
  • Niederberger, M., F. Krumeich, K. Hegetschweiler, and R. Nesper. 2001. An iron polyolate complex as a precursor for the controlled synthesis of monodispersed iron oxide colloids. Chemistry of Materials 14 (1):78–82. doi:10.1021/cm0110472.
  • Pike, J., S. Chan, F. Zhang, X. Wang, and J. Hanson. 2006. Formation of stable Cu2O from reduction of CuO nanoparticles. Applied Catalysis A General 303 (2):273–77. doi:10.1016/j.apcata.2006.02.008.
  • Pyzik, A., M. Ciezkowska, P.S. Krawczyk, A. Sobczak, L. Drewniak, A. Dziembowski, et al. 2018. Comparative analysis of deep sequenced methanogenic communities: Identification of microorganisms responsible for methane production. Microbial Cell Factories 17(1):197. doi:10.1186/s12934-018-1043-3.
  • Rahman, M.M., and K. Alam. 2021.Clean energy, population density, urbanization and environmental pollution nexus: Evidence from Bangladesh. Renew Energy 172: 1063–72.doi: 10.1016/J.RENENE.2021.03.103
  • Röder, M., A. Mohr, and Y. Liu. 2020.Sustainable bioenergy solutions to enable development in low- and middle-income countries beyond technology and energy access. Biomass & Bioenergy 143: 105876.doi: 10.1016/J.BIOMBIOE.2020.105876
  • Sivagurunathan, P., G. Kumar, P. Bakonyi, S.H. Kim, T. Kobayashi, K.Q. Xu, G. Lakner, G. Tóth, N. Nemestóthy, K. Bélafi-Bakó, et al. 2016. A critical review on issues and overcoming strategies for the enhancement of dark fermentative hydrogen production in continuous systems. International Journal of Hydrogen Energy 41(6):3820–36. doi:10.1016/J.IJHYDENE.2015.12.081.
  • Wang, J., and W. Wan. 2009. Factors influencing fermentative hydrogen production: A review. International Journal of Hydrogen Energy 34 (2):799–811. doi:10.1016/J.IJHYDENE.2008.11.015.
  • Wang, L., and M. Zhang. 2020.Study on synthesis and magnetic properties of Nd 2 Fe 14 B nanoparticles prepared by hydrothermal method. Journal of Magnetism and Magnetic Materials 507: 166841.doi: 10.1016/j.jmmm.2020.166841
  • Wang, W., B. Zhang, and Z. He. 2019.Bioelectrochemical deposition of palladium nanoparticles as catalysts by Shewanella oneidensis MR-1 towards enhanced hydrogen production in microbial electrolysis cells. Electrochimica Acta 318: 794–800.doi: 10.1016/j.electacta.2019.06.038
  • Yang, G., and J. Wang. 2018. Bioresource technology improving mechanisms of biohydrogen production from grass using zero- valent iron nanoparticles. Bioresource Technology 266:413–20. doi:10.1016/j.biortech.2018.07.004.
  • Zabranska, J., and D. Pokorna. 2017. Bioconversion of carbon dioxide to methane using hydrogen and hydrogenotrophic methanogens. Biotechnology Advances 36 (3):707–20. doi:10.1016/j.biotechadv.2017.12.003.
  • Zainuri, M. 2017. Hematite from natural iron stones as microwave absorbing material on X-band frequency ranges. Materials Science and Engineering. doi:10.1088/1757-899X/196/1/012008.
  • Zhao, W., Y. Zhang, B. Du, D. Wei, Q. Wei, and Y. Zhao. 2013.Enhancement effect of silver nanoparticles on fermentative biohydrogen production using mixed bacteria. Bioresource Technology 142: 240–45.doi: 10.1016/j.biortech.2013.05.042
  • Zilouei, H., and M. Taherdanak. 2015. Biohydrogen from lignocellulosic wastes. Lignocellul Bioprod 1:253–88. doi:10.1007/978-3-319-14033-9_7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.