208
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Preparation and performance characterization of steel slag-based thermal storage composites for waste recycling and thermal energy storage

, , , , , , & show all
Pages 8221-8234 | Received 10 Jun 2022, Accepted 29 Aug 2022, Published online: 05 Sep 2022

References

  • Aggarwal, A., N. Goyal, and A. Kumar. 2021. Thermal characteristics of sensible heat storage materials applicable for concentrated solar power systems. Materials Today: Proceedings 47:5812–17. doi:10.1016/j.matpr.2021.04.174.
  • Alva, G., L. Liu, X. Huang, and G. Fang. 2017. Thermal energy storage materials and systems for solar energy applications. Renewable and Sustainable Energy Reviews 68:693–706. doi:10.1016/j.rser.2016.10.021.
  • Cikmit, A. A., T. Tsuchida, R. Hashimoto, H. Honda, G. Kang, and K. Sogawa. 2019. Expansion characteristic of steel slag mixed with soft clay. Construction and Building Materials 227:116799. doi:10.1016/j.conbuildmat.2019.116799.
  • Dai, S., H. Zhu, M. Zhai, Q. Wu, Z. Yin, H. Qian, and S. Hua. 2021. Stability of steel slag as fine aggregate and its application in 3D printing materials. Construction and Building Materials 299:123938. doi:10.1016/j.conbuildmat.2021.123938.
  • Deng, S., Z. Wen, F. Su, Z. Wang, G. Lou, X. Liu, and R. Dou. 2021. Radial mixing of metallurgical slag particles and steel balls in a horizontally rotating drum: A discussion of particle size distribution and mixing time. Powder Technology 378:441–54. doi:10.1016/j.powtec.2020.10.022.
  • Dong, Q., G. Wang, X. Chen, J. Tan, and X. Gu. 2021. Recycling of steel slag aggregate in Portland cement concrete: An overview. Journal of cleaner production 282:124447. doi:10.1016/j.jclepro.2020.124447.
  • Feng, P., Z. Li, S. Zhang, and J. Q. Yang. 2022. Steel slag aggregate concrete filled-in FRP tubes: Volume expansion effect and axial compressive behaviour. Construction and Building Materials 318. doi:10.1016/j.conbuildmat.2021.125961.
  • Gutierrez, A., L. Miró, A. Gil, J. Rodríguez-Aseguinolaza, C. Barreneche, N. Calvet, X. Py, A. Inés Fernández, M. Grágeda, S. Ushak, et al. 2016. Advances in the valorization of waste and by-product materials as thermal energy storage (TES) materials. Renewable and Sustainable Energy Reviews 59:763–83. doi:10.1016/j.rser.2015.12.071.
  • Jiang, Z., M. E. Navarro Rivero, A. Anagnostopoulos, X. She, X. Liu, Y. Xuan, and Y. Ding. 2021. Fabrication of form stable composite phase change materials for thermal energy storage by direct powder incorporation with a preheating process. Powder Technology 391:544–56. doi:10.1016/j.powtec.2021.06.030.
  • Khedache, S., S. Makhlouf, D. Djefel, G. Lefebvre, and L. Royon. 2015. Preparation and thermal characterization of composite “Paraffin/red brick” as a novel form-stable of phase change material for thermal energy storage. International Journal of Hydrogen Energy 40 (39):13771–76. doi:10.1016/j.ijhydene.2015.03.075.
  • Kolawole, J. T., A. J. Babafemi, S. C. Paul, and A. du Plessis. 2020. Performance of concrete containing Nigerian electric arc furnace steel slag aggregate towards sustainable production. SM&T 25. doi:10.1016/j.susmat.2020.e00174.
  • Li, C., Q. Li, L. Cong, F. Jiang, Y. Zhao, C. Liu, Y. Xiong, C. Chang, and Y. Ding. 2019. MgO based composite phase change materials for thermal energy storage: The effects of MgO particle density and size on microstructural characteristics as well as thermophysical and mechanical properties. Applied Energy 250:81–91. doi:10.1016/j.apenergy.2019.04.094.
  • Li, L., T. C. Ling, and S. Y. Pan. 2022. Environmental benefit assessment of steel slag utilization and carbonation: A systematic review. The Science of the Total Environment 806:150280. doi:10.1016/j.scitotenv.2021.150280.
  • Lin, Y., G. Alva, and G. Fang. 2018. Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials. Energy 165: 685–708. doi: 10.1016/j.energy.2018.09.128.
  • Liu, X., M. Chen, Q. Xu, K. Gao, C. Dang, P. Li, Q. Luo, H. Zheng, C. Song, Y. Tian, et al. 2022. Bamboo derived SiC ceramics-phase change composites for efficient, rapid, and compact solar thermal energy storage. Solar Energy Materials and Solar Cells 240:111726. doi:10.1016/j.solmat.2022.111726.
  • Liu, Z., X. Yuan, Y. Zhao, J. W. Chew, and H. Wang. 2022. Concrete waste-derived aggregate for concrete manufacture. Journal of Cleaner Production 338:130637. doi:10.1016/j.jclepro.2022.130637.
  • Lopez Ferber, N., K. M. Al Naimi, J. F. Hoffmann, K. Al-Ali, and N. Calvet. 2022. Development of an electric arc furnace steel slag-based ceramic material for high temperature thermal energy storage applications. Journal of energy storage 51:104408. doi:10.1016/j.est.2022.104408.
  • Manente, G., Y. Ding, and A. Sciacovelli. 2022. A structured procedure for the selection of thermal energy storage options for utilization and conversion of industrial waste heat. Journal of energy storage 51:104411. doi:10.1016/j.est.2022.104411.
  • Ortega-Fernández, I., N. Calvet, A. Gil, J. Rodríguez-Aseguinolaza, A. Faik, and B. D’Aguanno. 2015. Thermophysical characterization of a by-product from the steel industry to be used as a sustainable and low-cost thermal energy storage material. Energy 89: 601–09. doi: 10.1016/j.energy.2015.05.153.
  • Rahou, J., H. Rezqi, M. El Ouahabi, and N. Fagel. 2022. Characterization of Moroccan steel slag waste: The potential green resource for ceramic production. Construction and Building Materials 314:125663. doi:10.1016/j.conbuildmat.2021.125663.
  • Ruan, W., Y. Ma, J. Liao, T. Ma, Y. Zhu, and A. Zhou. 2022. Effects of steel slag on the microstructure and mechanical properties of magnesium phosphate cement. Journal of building engineering 49. doi:10.1016/j.jobe.2022.104120.
  • Salah, W. A., M. Abuhelwa, and M. J. K. Bashir. 2021. The key role of sustainable renewable energy technologies in facing shortage of energy supplies in Palestine: Current practice and future potential. Journal of Cleaner Production 293:125348. doi:10.1016/j.jclepro.2020.125348.
  • Wang, J., Y. Wang, and Y. Huang. 2022. Synthesis and characterization of form-stable carbonate/steel slag composite materials for thermal energy storage. Journal of energy storage 52. doi:10.1016/j.est.2022.104708.
  • Xiong, Y., H. Wang, Y. Wu, J. Zhang, H. Li, Q. Xu, X. Zhang, C. Li, and Y. Ding. 2022. Carbide slag based shape-stable phase change materials for waste recycling and thermal energy storage. Journal of energy storage 50. doi:10.1016/j.est.2022.104256.
  • Zhang, S., and W. Chen. 2021. China’s energy transition pathway in a carbon neutral vision. Engineering. doi:10.1016/j.eng.2021.09.004.
  • Zhang, K., P. Shen, L. Yang, M. Rao, S. Nie, and F. Wang. 2021. Development of high-ferrite cement: Toward green cement production. Journal of Cleaner Production 327:129487. doi:10.1016/j.jclepro.2021.129487.
  • Zhou, B., L. Zhen, Y. Yang, W. Ma, Y. Fu, X. Duan, and H. Wang. 2022. Novel composite phase change material of high heat storage and photothermal conversion ability. Journal of energy storage 49:104101. doi:10.1016/j.est.2022.104101.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.