884
Views
1
CrossRef citations to date
0
Altmetric
Review

A review on performance, economic, and environmental analyses of integrated solid oxide fuel cell and biomass gasification systems

ORCID Icon, , ORCID Icon &
Pages 8403-8426 | Received 22 Jun 2022, Accepted 26 Aug 2022, Published online: 11 Sep 2022

References

  • Abuadala, A., and I. Dincer. 2011. Exergoeconomic analysis of a hybrid system based on steam biomass gasification products for hydrogen production. International Journal of Hydrogen Energy 36 (20):12780–93. doi:10.1016/j.ijhydene.2011.07.067.
  • Advanced bıomass CCHP based on gasification, SOFC and cooling machines. n.d. https://www.era-learn.eu/network-information/networks/bestf3/11th-joint-call-of-era-net-bioenergy-and-1st-additional-call-of-bestf3/advanced-biomass-cchp-based-on-gasification-sofc-and-cooling-machines.
  • Agu, C.E., C. Pfeifer, M. Eikeland, L.-A. Tokheim, and B.M.E. Moldestad. 2019. Detailed one-dimensional model for steam-biomass gasification in a bubbling fluidized bed. Energy & Fuels 33 (8):7385–97. doi:10.1021/acs.energyfuels.9b01340.
  • Ahmed, T.Y., M.M. Ahmad, S. Yusup, A. Inayat, and Z. Khan. 2012. Mathematical and computational approaches for design of biomass gasification for hydrogen production: a review. Renewable and Sustainable Energy Reviews 16 (4):2304–15. doi:10.1016/j.rser.2012.01.035.
  • Ahrenfeldt, J., T.P. Thomsen, U. Henriksen, and L.R. Clausen. 2013. Biomass gasification cogeneration – a review of state of the art technology and near future perspectives. Applied Thermal Engineering 50 (2):1407–17. doi:10.1016/j.applthermaleng.2011.12.040.
  • Alderucci, V., P. Antonucci, G. Maggio, N. Giordano, and V. Antonucci. 1994. Thermodynamic analysis of SOFC fuelled by biomass-derived gas. International Journal of Hydrogen Energy 19 (4):369–76. doi:10.1016/0360-3199(94)90070-1.
  • Audasso, E., F.R. Bianchi, and B. Bosio. 2020. 2D simulation for CH4 internal reforming-SOFCs: an approach to study performance degradation and optimization. Energies 13:4116. doi:10.3390/en13164116.
  • Bang-Møller, C. 2010. Design and optimization of an integrated biomass gasification and solid oxide fuel cell system. Denmark: Technical University of Denmark.
  • Bang-Møller, C., and M. Rokni. 2010. Thermodynamic performance study of biomass gasification, solid oxide fuel cell and micro gas turbine hybrid systems. Energy Conversion and Management 51 (11):2330–39. doi:10.1016/j.enconman.2010.04.006.
  • Bang-Møller, C., M. Rokni, and B. Elmegaard. 2011. Exergy analysis and optimization of a biomass gasification, solid oxide fuel cell and micro gas turbine hybrid system. Energy 36 (8):4740–52. doi:https://doi.org/10.1016/j.energy.2011.05.005.
  • Barchewitz, L., J. Palsson. 2000. Design of an SOFC system combined to the gasification of biomass. In: 4th European SOFC Forum Lucern, Switzerland, ed. A. McEvoy, 59–68.
  • Baruah, D., and D.C. Baruah. 2014. Modeling of biomass gasification: a review. Renewable and Sustainable Energy Reviews 39: 806–15. doi:https://doi.org/10.1016/j.rser.2014.07.129.
  • Blaze Project. 2021. https://www.blazeproject.eu/.
  • Bocci, E., M. Sisinni, M. Moneti, L. Vecchione, A. Di Carlo, and M. Villarini. 2014. State of art of small scale biomass gasification power systems: a review of the different typologies. Energy Procedia 45: 247–56. doi:10.1016/j.egypro.2014.01.027.
  • Borji, M., K. Atashkari, S. Ghorbani, and N. Nariman-Zadeh. 2015. Parametric analysis and pareto optimization of an integrated autothermal biomass gasification, solid oxide fuel cell and micro gas turbine CHP system. International Journal of Hydrogen Energy 40 (41):14202–23. doi:10.1016/j.ijhydene.2015.08.103.
  • Broust, F. 2008. Green fuel cell, SOFC fuel cell fuelled by biomass gasification gas. Publishable final activity report of EU project SES6-CT-2004-503122.
  • Cayan, F.N., M. Zhi, S.R. Pakalapati, I. Celik, N. Wu, and R. Gemmen. 2008. Effects of coal syngas impurities on anodes of solid oxide fuel cells. Journal of Power Sources 185 (2):595–602. doi:10.1016/j.jpowsour.2008.06.058.
  • Cheddie, D.F., and N.D.H. Munroe. 2007. A dynamic 1D model of a solid oxide fuel cell for real time simulation. Journal of Power Sources 171 (2):634–43. doi:10.1016/j.jpowsour.2007.06.170.
  • Cheng, C., J. Cherian, M.S. Sial, U. Zaman, and H. Niroumandi. 2021. Performance assessment of a novel biomass-based solid oxide fuel cell power generation cycle; economic analysis and optimization. Energy 224: 120134. doi:10.1016/j.energy.2021.120134.
  • Cheng, K., J. Kang, D.L. King, V. Subramanian, C. Zhou, Q. Zhang, and Y. Wang. 2017. Advances in catalysis for syngas conversion to hydrocarbons, 125–208. doi:10.1016/bs.acat.2017.09.003.
  • Colpan, C.O., I. Dincer, and F. Hamdullahpur. 2008. A review on macro-level modeling of planar solid oxide fuel cells. International Journal of Energy Research 32 (4):336–55. doi:10.1002/er.1363.
  • Colpan, C.O., F. Hamdullahpur, and I. Dincer. 2010. Solid oxide fuel cell and biomass gasi cation systems for better efficiency and environmental impact solid oxide fuel cell and biomass gasification systems for better efficiency and environmental impact. 78:305–313.
  • Corigliano, O., and P. Fragiacomo. 2020.Extensive analysis of SOFC fed by direct syngas at different anodic compositions by using two numerical approaches. Energy Conversion and Management 209: 112664.doi:https://doi.org/10.1016/j.enconman.2020.112664.
  • Couto, N., V. Silva, E. Monteiro, P.S.D. Brito, and A. Rouboa. 2013. Experimental and numerical analysis of coffee husks biomass gasification in a fluidized bed reactor. Energy Procedia 36: 591–95. doi:10.1016/j.egypro.2013.07.067.
  • Dincer, I., and T.A.H. Ratlamwala. 2013. Importance of exergy for analysis, improvement, design, and assessment. Wiley Interdisciplinary Reviews: Energy and Environment 2:335–49. doi:10.1002/wene.63.
  • Dincer, I., and M.A. Rosen. 2007. Exergy and energy analyses. Exergy 23–35. Elsevier. doi:10.1016/B978-008044529-8.50005-7.
  • Doherty, W., A. Reynolds, and D. Kennedy. 2009. The effect of air preheating in a biomass CFB gasifier using ASPEN Plus simulation. Biomass & Bioenergy 33 (9):1158–67. doi:https://doi.org/10.1016/j.biombioe.2009.05.004.
  • Doherty, W., A. Reynolds, and D. Kennedy. 2010. Computer simulation of a biomass gasification-solid oxide fuel cell power system using Aspen Plus. Energy 35 (12):4545–55. doi:https://doi.org/10.1016/j.energy.2010.04.051.
  • European Commission. 2013. Project Final Report. SARTRE Proj, 1–58.
  • Faheem, H.H., S.Z. Abbas, A.N. Tabish, L. Fan, and F. Maqbool. 2022. A review on mathematical modelling of direct internal reforming- solid oxide fuel cells. Journal of Power Sources 520: 230857. doi:10.1016/j.jpowsour.2021.230857.
  • Ferrari, M.L., U.M. Damo, A. Turan, and D. Sánchez. 2017. Hybrid systems based on solid oxide fuel cells. Chichester, UK: John Wiley & Sons, Ltd. doi:10.1002/9781119039044.
  • Fletcher, D.F., B.S. Haynes, J. Chen, and S.D. Joseph. 1998. Computational fluid dynamics modelling of an entrained flow biomass gasifier. Applied Mathematical Modelling 22 (10):747–57. doi:10.1016/S0307-904X(98)10025-2.
  • Frangopoulos, C. 1987. Thermo-economic functional analysis and optimization. Energy 12 (7):563–71. doi:https://doi.org/10.1016/0360-5442(87)90097-1.
  • Ghaffarpour, Z., M. Mahmoudi, A.H. Mosaffa, and L. Garousi Farshi. 2018. Thermoeconomic assessment of a novel integrated biomass based power generation system including gas turbine cycle, solid oxide fuel cell and Rankine cycle. Energy Conversion and Management 161: 1–12. doi:https://doi.org/10.1016/j.enconman.2018.01.071.
  • Gholamian, E., P. Hanafizadeh, A. Habibollahzade, and P. Ahmadi. 2018. Evolutionary based multi-criteria optimization of an integrated energy system with SOFC, gas turbine, and hydrogen production via electrolysis. International Journal of Hydrogen Energy 43 (33):16201–14. doi:10.1016/j.ijhydene.2018.06.130.
  • Gholamian, E., V. Zare, and S.M. Mousavi. 2016. Integration of biomass gasification with a solid oxide fuel cell in a combined cooling, heating and power system: a thermodynamic and environmental analysis. International Journal of Hydrogen Energy 41 (44):20396–406. doi:10.1016/j.ijhydene.2016.07.217.
  • Gmeindl, F.D., R.A. Geisbrecht, K.R. Craig, S. Kasper, and V.B. Shah. 1989. New directions in MCFC systems. In: Proceedings of the Ninth Annual gasification and gas stream Cleanup Contract Meet, Morgantown.
  • Gøbel, B., U. Henriksen, J. Ahrenfeldt, T.K. Jensen, C. Hindsgaul, B. Jd, and S. Lh. 2004. Status–2000 hours of operation with the VIKING gasifier. In: Proc. 2. World Biomass Conf. Technol. Exhib, Munich, Germany.
  • Habibollahzade, A., E. Gholamian, and A. Behzadi. 2019. Multi-Objective optimization and comparative performance analysis of hybrid biomass-based solid oxide fuel cell/solid oxide electrolyzer cell/gas turbine using different gasification agents. Applied Energy 233-234: 985–1002. doi:10.1016/j.apenergy.2018.10.075.
  • Habibollahzade, A., E. Gholamian, E. Houshfar, and A. Behzadi. 2018. Multi-objective optimization of biomass-based solid oxide fuel cell integrated with Stirling engine and electrolyzer. Energy Conversion and Management 171: 1116–33. doi:https://doi.org/10.1016/j.enconman.2018.06.061.
  • HiEff-BioPower. 2020. https://www.hieff-biopower.eu/home/.
  • Hosseinpour, J., A. Chitsaz, B. Eisavi, and M. Yari. 2018. Investigation on performance of an integrated SOFC-Goswami system using wood gasification. Energy 148: 614–28. doi:10.1016/j.energy.2018.01.162.
  • Hosseinpour, J., A. Chitsaz, L. Liu, and Y. Gao. 2020. Simulation of eco-friendly and affordable energy production via solid oxide fuel cell integrated with biomass gasification plant using various gasification agents 145. Elsevier Ltd. doi:10.1016/j.renene.2019.06.033.
  • Hutton, P. N., M. A. Musich, N. Patel, and D. D. T. Schmidt. 2003. Feasibility study of a thermally integrated SOFC-gasification system for biomass power generation. North Dakota: University of North Dakota.
  • Indrawan, N., A. Kumar, M. Moliere, K.A. Sallam, and R.L. Huhnke. 2020. Distributed power generation via gasification of biomass and municipal solid waste: A review. Journal of the Energy Institute 93 (6):2293–313. doi:10.1016/j.joei.2020.07.001.
  • Jaworski, Z., B. Zakrzewska, and P. Pianko-Oprych. 2017. On thermodynamic equilibrium of carbon deposition from gaseous C-H-O mixtures: Updating for nanotubes. Reviews in Chemical Engineering 33. doi:10.1515/revce-2016-0022.
  • Jiang, P., A. Mahmud Parvez, Y. Meng, X. Dong, M. Xu, X. Luo, K. Shi, and T. Wu. 2021. Novel two-stage fluidized bed-plasma gasification integrated with SOFC and chemical looping combustion for the high efficiency power generation from MSW: A thermodynamic investigation. Energy Conversion and Management 236: 114066. doi:10.1016/j.enconman.2021.114066.
  • Jia, J., L. Shu, G. Zang, L. Xu, A. Abudula, and K. Ge. 2018. Energy analysis and techno-economic assessment of a co-gasification of woody biomass and animal manure, solid oxide fuel cells and micro gas turbine hybrid system. Energy 149: 750–61. doi:10.1016/j.energy.2018.02.057.
  • Kalina, J. 2019.Options for using solid oxide fuel cell technology in complex integrated biomass gasification cogeneration plants. Biomass & Bioenergy 122: 400–13. doi:10.1016/j.biombioe.2019.02.009.
  • Karimi, M.H., N. Chitgar, M.A. Emadi, P. Ahmadi, and M.A. Rosen. 2020. Performance assessment and optimization of a biomass-based solid oxide fuel cell and micro gas turbine system integrated with an organic rankine cycle. International Journal of Hydrogen Energy 45 (11):6262–77. doi:10.1016/j.ijhydene.2019.12.143.
  • Kumar, P., and O. Singh. 2019. Thermoeconomic analysis of SOFC-GT-VARS-ORC combined power and cooling system. International Journal of Hydrogen Energy 44 (50):27575–86. doi:10.1016/j.ijhydene.2019.08.198.
  • Lazzaretto, A., and G. Tsatsaronis. 2006. SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems. Energy 31 (8–9):1257–89. doi:https://doi.org/10.1016/j.energy.2005.03.011.
  • Li, H., F. Liang, P. Guo, C. He, S. Li, S. Zhou, L. Deng, C. Bai, X. Zhang, G. Zhang. 2020. Study on the biomass-based SOFC and ground source heat pump coupling cogeneration system. Applied Thermal Engineering 165:114527. doi:10.1016/j.applthermaleng.2019.114527.
  • Li, Y., Y. Pang, H. Tu, F. Torrigino, S.M.A. Biollaz, Z. Li, Y. Huang, X. Yin, F. Grimm, J. Karl. 2021. Impact of syngas from biomass gasification on solid oxide fuel cells: a review study for the energy transition. Energy Conversion and Management 250:114894. doi:10.1016/j.enconman.2021.114894.
  • Lozano, M.A., and A. Valero. 1993. Theory of the exergetic cost. Energy 18 (9):939–60. doi:https://doi.org/10.1016/0360-5442(93)90006-Y.
  • Lv, X., X. Ding, and Y. Weng. 2019. Performance analysis of an intermediate-temperature-SOFC/Gas turbine hybrid system using gasified biomass fuel in different operating modes. Journal of Engineering for Gas Turbines and Power 141 (1):1–5. doi:10.1115/1.4040811.
  • Maekinen, T., J. Leppaelahti, E. Kurkela, and Y. Solantausta. 1992. New alternative for electricity production. Part 3: Electricity production from biomass and natural gas by a solid oxide fuel cell. NASA STI/Recon Technical Report N, 93, 31862.
  • Ma, S., G. Loreti, L. Wang, F. Maréchal, J. Van Herle, and C. Dong. 2022. Comparison and optimization of different fuel processing options for biogas-fed solid-oxide fuel cell plants. International Journal of Hydrogen Energy 47 (1):551–64. doi:10.1016/j.ijhydene.2021.10.025.
  • Marcantonio, V., E. Bocci, J.P. Ouweltjes, L. Del Zotto, and D. Monarca. 2020. Evaluation of sorbents for high temperature removal of tars, hydrogen sulphide, hydrogen chloride and ammonia from biomass-derived syngas by using Aspen Plus. International Journal of Hydrogen Energy 45 (11):6651–62. doi:10.1016/j.ijhydene.2019.12.142.
  • Marcantonio, V., L. Del Zotto, J.P. Ouweltjes, and E. Bocci. 2022. Main issues of the impact of tar, H2S, HCl and alkali metal from biomass-gasification derived syngas on the SOFC anode and the related gas cleaning technologies for feeding a SOFC system: A review. International Journal of Hydrogen Energy 47 (1):517–39. doi:10.1016/j.ijhydene.2021.10.023.
  • Martín, M.M. 2016. Syngas. Industrial Chemical Process Analysis and Design 199–297. Elsevier. doi:10.1016/B978-0-08-101093-8.00005-7.
  • Ma, W., X. Xue, and G. Liu. 2018. Techno-Economic evaluation for hybrid renewable energy system: application and merits. Energy 159: 385–409. doi:10.1016/j.energy.2018.06.101.
  • Meyer, L., G. Tsatsaronis, J. Buchgeister, and L. Schebek. 2009. Exergoenvironmental analysis for evaluation of the environmental impact of energy conversion systems. Energy 34 (1):75–89. doi:10.1016/j.energy.2008.07.018.
  • Min, G., Y.J. Park, and J. Hong. 2020. 1D thermodynamic modeling for a solid oxide fuel cell stack and parametric study for its optimal operating conditions. Energy Conversion and Management 209: 112614. doi:https://doi.org/10.1016/j.enconman.2020.112614.
  • Mojaver, P., S. Khalilarya, and A. Chitsaz. 2018. Performance assessment of a combined heat and power system: A novel integrated biomass gasification, solid oxide fuel cell and high-temperature sodium heat pipe system part I: thermodynamic analysis. Energy Conversion and Management 171: 287–97. doi:10.1016/j.enconman.2018.05.096.
  • Mojaver, P., S. Khalilarya, and A. Chitsaz. 2019. Multi-objective optimization using response surface methodology and exergy analysis of a novel integrated biomass gasification, solid oxide fuel cell and high-temperature sodium heat pipe system. Applied Thermal Engineering 156: 627–39. doi:10.1016/j.applthermaleng.2019.04.104.
  • Mojaver, P., S. Khalilarya, and A. Chitsaz. 2020. Multi-objective optimization and decision analysis of a system based on biomass fueled SOFC using couple method of entropy/vikor. Energy Conversion and Management 203: 112260. doi:https://doi.org/10.1016/j.enconman.2019.112260.
  • Morandin, M., F. Maréchal, and S. Giacomini. 2013. Synthesis and thermo-economic design optimization of wood-gasifier-SOFC systems for small scale applications. Biomass & Bioenergy 49: 299–314. doi:10.1016/j.biombioe.2013.01.003.
  • Narnaware, S.L., and N.L. Panwar. 2022. Biomass gasification for climate change mitigation and policy framework in India: a review. Bioresource Technology Reports 17: 100892. doi:https://doi.org/10.1016/j.biteb.2021.100892.
  • Ni, M. 2010. 2D thermal-fluid modeling and parametric analysis of a planar solid oxide fuel cell. Energy Conversion and Management 51 (4):714–21. doi:10.1016/j.enconman.2009.10.028.
  • Nikoo, M.B., and N. Mahinpey. 2008. Simulation of biomass gasification in fluidized bed reactor using ASPEN PLUS. Biomass & Bioenergy 32 (12):1245–54. doi:10.1016/J.BIOMBIOE.2008.02.020.
  • Ogorure, O.J., C.O.C. Oko, E.O. Diemuodeke, and K. Owebor. 2018. Energy, exergy, environmental and economic analysis of an agricultural waste-to-energy integrated multigeneration thermal power plant. Energy Conversion and Management 171: 222–40. doi:https://doi.org/10.1016/j.enconman.2018.05.093.
  • Omosun, A., A. Bauen, N. Brandon, C. Adjiman, and D. Hart. 2004. Modelling system efficiencies and costs of two biomass-fuelled SOFC systems. Journal of Power Sources 131 (1–2):96–106. doi:10.1016/j.jpowsour.2004.01.004.
  • Owebor, K., C.O.C. Oko, E.O. Diemuodeke, and O.J. Ogorure. 2019. Thermo-environmental and economic analysis of an integrated municipal waste-to-energy solid oxide fuel cell, gas-, steam-, organic fluid- and absorption refrigeration cycle thermal power plants. Applied Energy 239: 1385–401. doi:https://doi.org/10.1016/j.apenergy.2019.02.032.
  • Ozcan, H., and I. Dincer. 2015. Performance evaluation of an SOFC based trigeneration system using various gaseous fuels from biomass gasification. International Journal of Hydrogen Energy 40 (24):7798–807. doi:10.1016/j.ijhydene.2014.11.109.
  • Ozgoli, H.A., H. Ghadamian, and M. Pazouki. 2017. Economic analysis of biomass gasification-solid oxide fuel cell-gas turbine hybrid cycle. International Journal of Energy Research 7:1007–18.
  • Palomba, V., M. Prestipino, and A. Galvagno. 2017. Tri-Generation for industrial applications: development of a simulation model for a gasification-SOFC based system. International Journal of Hydrogen Energy 42 (46):27866–83. doi:10.1016/j.ijhydene.2017.06.206.
  • Peksen, M., A. Al-Masri, L. Blum, and D. Stolten. 2013. 3D transient thermomechanical behaviour of a full scale SOFC short stack. International Journal of Hydrogen Energy 38 (10):4099–107. doi:10.1016/j.ijhydene.2013.01.072.
  • Peng, W., H. Chen, J. Liu, X. Zhao, and G. Xu. 2021. Techno-Economic assessment of a conceptual waste-to-energy CHP system combining plasma gasification, SOFC, gas turbine and supercritical CO2 cycle. Energy Conversion and Management 245: 114622. doi:10.1016/j.enconman.2021.114622.
  • Peng, J., J. Huang, X. Wu, Y. Xu, H. Chen, and X. Li. 2021. Solid oxide fuel cell (SOFC) performance evaluation, fault diagnosis and health control: a review. Journal of Power Sources 505: 230058. doi:10.1016/j.jpowsour.2021.230058.
  • Perna, A., M. Minutillo, E. Jannelli, V. Cigolotti, S.W. Nam, and K.J. Yoon. 2018. Performance assessment of a hybrid SOFC/MGT cogeneration power plant fed by syngas from a biomass down-draft gasifier. Applied Energy 227: 80–91. doi:10.1016/j.apenergy.2017.08.077.
  • Pierobon, L., M. Rokni, U. Larsen, and F. Haglind. 2013. Thermodynamic analysis of an integrated gasification solid oxide fuel cell plant combined with an organic rankine cycle. Renewable Energy 60: 226–34. doi:10.1016/j.renene.2013.05.021.
  • Pongratz, G., V. Subotić, H. Schroettner, B. Stoeckl, C. Hochenauer, A. Anca-Couce, and R. Scharler. 2021. Investigation of solid oxide fuel cell operation with synthetic biomass gasification product gases as a basis for enhancing its performance. Biomass Conversion and Biorefinery 11 (1):121–39. doi:10.1007/s13399-020-00726-w.
  • Puig-Arnavat, M., J.C. Bruno, and A. Coronas. 2010. Review and analysis of biomass gasification models. Renewable and Sustainable Energy Reviews 14 (9):2841–51. doi:10.1016/j.rser.2010.07.030.
  • Radenahmad, N., A.T. Azad, M. Saghir, J. Taweekun, M.S.A. Bakar, M.S. Reza, and A. K. Azad. 2020.A review on biomass derived syngas for SOFC based combined heat and power application. Renewable and Sustainable Energy Reviews 119: 109560. doi:10.1016/j.rser.2019.109560.
  • Ramadhani, F., M.A. Hussain, H. Mokhlis, and S. Hajimolana. 2017.Optimization strategies for solid oxide fuel cell (SOFC) application: A literature survey. Renewable and Sustainable Energy Reviews 76: 460–84. doi:10.1016/j.rser.2017.03.052.
  • Ramos, A., E. Monteiro, and A. Rouboa. 2019. Numerical approaches and comprehensive models for gasification process: a review. Renewable and Sustainable Energy Reviews 110: 188–206. doi:https://doi.org/10.1016/j.rser.2019.04.048.
  • Ranjan, K.R., and S.C. Kaushik. 2013. Energy, exergy and thermo-economic analysis of solar distillation systems: a review. Renewable and Sustainable Energy Reviews 27: 709–23. doi:10.1016/j.rser.2013.07.025.
  • Recalde, M., T. Woudstra, and P. V. Aravind. 2019. Gasifier, solid oxide fuel cell integrated systems for energy production from wet biomass. Frontiers in Energy Research 7. doi:10.3389/fenrg.2019.00129.
  • Rokni, M. 2014. Biomass gasification integrated with a solid oxide fuel cell and Stirling engine. Energy 77: 6–18. doi:10.1016/j.energy.2014.01.078.
  • Rokni, M. 2014. Thermodynamic and thermoeconomic analysis of a system with biomass gasification, solid oxide fuel cell (SOFC) and Stirling engine. Energy 76: 19–31. doi:10.1016/j.energy.2014.01.106.
  • Roy, D., and S. Samanta. 2021. Development and multiobjective optimization of a novel trigeneration system based on biomass energy. Energy Conversion and Management 240: 114248. doi:10.1016/j.enconman.2021.114248.
  • Roy, D., S. Samanta, and S. Ghosh. 2019. Techno-Economic and environmental analyses of a biomass based system employing solid oxide fuel cell, externally fired gas turbine and organic Rankine cycle. Journal of Cleaner Production 225: 36–57. doi:10.1016/j.jclepro.2019.03.261.
  • Roy, D., S. Samanta, and S. Ghosh. 2019. Thermo-Economic assessment of biomass gasification-based power generation system consists of solid oxide fuel cell, supercritical carbon dioxide cycle and indirectly heated air turbine. Clean Technologies and Environmental Policy 21 (4):827–45. doi:10.1007/s10098-019-01671-7.
  • Sadeghi, M., A.S. Mehr, M. Zar, and M. Santarelli. 2018. Multi-objective optimization of a novel syngas fed SOFC power plant using a downdraft gasifier. Energy 148: 16–31. doi:10.1016/j.energy.2018.01.114.
  • Safarian, S., R. Unnþórsson, and C. Richter. 2019. A review of biomass gasification modelling. Renewable and Sustainable Energy Reviews 110: 378–91. doi:10.1016/j.rser.2019.05.003.
  • Sansaniwal, S.K., M.A. Rosen, and S.K. Tyagi. 2017. Global challenges in the sustainable development of biomass gasification: an overview. Renewable and Sustainable Energy Reviews 80: 23–43. doi:10.1016/j.rser.2017.05.215.
  • Sezer, H., J.H. Mason, I.B. Celik, and T. Yang. 2021. Three-dimensional modeling of performance degradation of planar SOFC with phosphine exposure. International Journal of Hydrogen Energy 46 (9):6803–16. doi:10.1016/j.ijhydene.2020.11.176.
  • Shabbar, S., and I. Janajreh. 2013. Thermodynamic equilibrium analysis of coal gasification using Gibbs energy minimization method. Energy Conversion and Management 65: 755–63. doi:https://doi.org/10.1016/j.enconman.2012.02.032.
  • Shafie, S. M., A. H. Nu’Man, and N. N. A. N. Yusuf. 2021. Biogas to fuel cell state of the art: a review. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 86 (1):87–104. doi:10.37934/arfmts.86.1.87104.
  • Shayan, E., V. Zare, and I. Mirzaee. 2019. On the use of different gasification agents in a biomass fueled SOFC by integrated gasifier: a comparative exergo-economic evaluation and optimization. Energy 171: 1126–38. doi:10.1016/j.energy.2019.01.095.
  • Shi, H., Q. Li, W. Tan, H. Qiu, and C. Su. 2020. Solid oxide fuel cells in combination with biomass gasification for electric power generation. Chinese Journal of Chemical Engineering 28 (4):1156–61. doi:10.1016/j.cjche.2020.01.018.
  • Siefert, N.S., and S. Litster. 2014. Exergy & economic analysis of biogas fueled solid oxide fuel cell systems. Journal of Power Sources 272: 386–97. doi:10.1016/j.jpowsour.2014.08.044.
  • Singh, D., E. Hernández-Pacheco, P.N. Hutton, N. Patel, and M.D. Mann. 2005. Carbon deposition in an SOFC fueled by tar-laden biomass gas: a thermodynamic analysis. Journal of Power Sources 142 (1–2):194–99. doi:10.1016/j.jpowsour.2004.10.024.
  • Sucipta, M., S. Kimijima, and K. Suzuki. 2007. Performance analysis of the SOFC–MGT hybrid system with gasified biomass fuel. Journal of Power Sources 174 (1):124–35. doi:https://doi.org/10.1016/j.jpowsour.2007.08.102.
  • Toonssen, R., S. Sollai, P. V. Aravind, N. Woudstra, and A.H.M. Verkooijen. 2011. Alternative system designs of biomass gasification SOFC/GT hybrid systems. International Journal of Hydrogen Energy 36 (16):10414–25. doi:10.1016/j.ijhydene.2010.06.069.
  • Torres, C., and A. Valero. 2021. The exergy cost theory revisited. Energies 14 (6):1594. doi:https://doi.org/10.3390/en14061594.
  • Ud Din, Z., and Z.A. Zainal. 2016. Biomass integrated gasification–SOFC systems: technology overview. Renewable and Sustainable Energy Reviews 53: 1356–76. doi:10.1016/j.rser.2015.09.013.
  • Vecten, S., B. Herbert, M. Wilkinson, A. Shaw, N. Bimbo, and R. Dawson. 2018. Integrated plasma gasification and SOFC system simulation using Aspen Plus. In: 13th European SOFC & SOE Forum 2018, 3-6 July 2018, Lucerne Switzerland, pp. 0–10.
  • von Spakovsky, M.R., and R.B. Evans. 1993. Engineering functional analysis—Part I. Journal of Energy Resources Technology 115 (2):86–92. doi:10.1115/1.2905985.
  • W2W (Waste to Watts). 2022. https://waste2watts-project.net/.
  • Wang, X., X. Lv, and Y. Weng. 2020. Performance analysis of a biogas-fueled SOFC/GT hybrid system integrated with anode-combustor exhaust gas recirculation loops. Energy 197: 117213. doi:10.1016/j.energy.2020.117213.
  • Woolcock, P.J., and R.C. Brown. 2013. A review of cleaning technologies for biomass-derived syngas. Biomass & Bioenergy 52: 54–84. doi:10.1016/j.biombioe.2013.02.036.
  • Wu, Z., P. Zhu, J. Yao, S. Zhang, J. Ren, F. Yang, and Z. Zhang. 2020. Combined biomass gasification, SOFC, IC engine, and waste heat recovery system for power and heat generation: energy, exergy, exergoeconomic, environmental (4E) evaluations. Applied Energy 279: 115794. doi:10.1016/j.apenergy.2020.115794.
  • Yan, L., Y. Cao, and B. He. 2019. Energy, exergy and economic analyses of a novel biomass fueled power plant with carbon capture and sequestration. The Science of the Total Environment 690: 812–20. doi:10.1016/j.scitotenv.2019.07.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.