181
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Combined assessment of injection timing and exhaust gas recirculation strategy on the performance, emission and combustion characteristics of algae biodiesel powered diesel engine

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, , , , , & ORCID Icon show all

References

  • Agarwal, A.K., D.K. Srivastava, A. Dhar, R.K. Maurya, P.C. Shukla, and A.P. Singh. 2013. Effect of fuel injection timing and pressure on combustion, emissions and performance characteristics of a single cylinder diesel engine. Fuel 111: 374–83. doi: 10.1016/j.fuel.2013.03.016
  • Ahamad Shaik, A., S. Rami Reddy, V. Dhana Raju, and M. Govindarajan. 2020. Combined influence of compression ratio and EGR on diverse characteristics of a research diesel engine fueled with waste mango seed biodiesel blend. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects . doi:10.1080/15567036.2020.1811809.
  • Ansari, N.A., A. Sharma, and Y. Singh. 2018. Performance and emission analysis of a diesel engine implementing polanga biodiesel and optimization using Taguchi method. Process Safety and Environmental Protection 120:146–54. doi: 10.1016/j.psep.2018.09.009
  • Arbab, M.I., M. Varman, H.H. Masjuki, M.A. Kalam, S. Imtenan, H. Sajjad, et al. 2015. Evaluation of combustion, performance, and emissions of optimum palm–coconut blend in turbocharged and non-turbocharged conditions of a diesel engine. Energy Conversion and Management 90:111–20. doi:10.1016/j.enconman.2014.11.017.
  • Balasubramanian, D., and K.R. Lawrence. 2019. Influence on the effect of titanium dioxide nanoparticles as an additive with Mimusops elengi methyl ester in a CI engine. Environmental Science and Pollution Research 26(16):16493–502. doi:10.1007/s11356-019-04826-7.
  • Barik, D., and S. Murugan. 2016. Experimental investigation on the behavior of a DI diesel engine fueled with raw biogas–diesel dual fuel at different injection timing. Journal of the Energy Institute 89(3):373–88. doi:10.1016/j.joei.2015.03.002.
  • Bhowmick, P., A.K. Jeevanantham, B. Ashok, K. Nanthagopal, D.A. Perumal, V. Karthickeyan, et al. 2019. Effect of fuel injection strategies and EGR on biodiesel blend in a CRDI engine. Energy 181:1094–113. doi:10.1016/j.energy.2019.06.014.
  • Chen, H., X. Su, J. He, and B. Xie. 2019. Investigation on combustion and emission characteristics of a common rail diesel engine fueled with diesel/n-pentanol/methanol blends. Energy 167:297–311. doi:10.1016/j.energy.2018.10.199
  • Demirbas, A., and M. Fatih Demirbas. 2011. Importance of algae oil as a source of biodiesel. Energy Conversion and Management 52(1):163–70. doi:10.1016/j.enconman.2010.06.055.
  • Dhana Raju, V., and P.S. Kishore. 2019. Effect of exhaust gas recirculation on performance and emission characteristics of a diesel engine fuelled with tamarind biodiesel. International Journal of Ambient Energy 40(6):624–33. doi:10.1080/01430750.2017.1421579.
  • Dimitriou, P., T. Tsujimura, and Y. Suzuki. 2019. Adopting biodiesel as an indirect way to reduce the NOx emission of a hydrogen fumigated dual-fuel engine. Fuel 244:324–34. doi:10.1016/j.fuel.2019.02.010
  • Edara, G., Y.V.V. Satyanarayana Murthy, J. Nayar, M. Ramesh, and P. Srinivas. 2019. Combustion analysis of modified light duty diesel engine under high pressure split injections with cooled EGR. Engineering Science and Technology, an International Journal 22(3):966–78. doi:10.1016/j.jestch.2019.01.013.
  • El_kassaby, M., and M.A. Nemit_allah. 2013. Studying the effect of compression ratio on an engine fueled with waste oil produced biodiesel/diesel fuel. Alexandria Engineering Journal 52(1):1–11. doi:10.1016/j.aej.2012.11.007.
  • Elumalai, P.V., D. Balasubramanian, M. Parthasarathy, A.R. Pradeepkumar, S. Mohamed Iqbal, J. Jayakar, et al. 2021. An experimental study on harmful pollution reduction technique in low heat rejection engine fuelled with blends of pre-heated linseed oil and nano additive. Journal of Cleaner Production 283:124617. doi:10.1016/j.jclepro.2020.124617.
  • Gnanasekaran, S., N. Saravanan, and M. Ilangkumaran. 2016. Influence of injection timing on performance, emission and combustion characteristics of a DI diesel engine running on fish oil biodiesel. Energy 116:1218–29. doi: 10.1016/j.energy.2016.10.039
  • Govindasamy, P., A. Godwin Antony, K. Rajaguru, and K. Saravanan. 2018. Experimental investigation of the effect of compression ratio in a direct injection diesel engine fueled with spirulina algae. Biodiesel Journal of Applied Fluid Mechanics 11:107–14.
  • Hoang, A.T., Z. Huang, S. Nižetić, A. Pandey, X.P. Nguyen, R. Luque, et al. 2022. Characteristics of hydrogen production from steam gasification of plant-originated lignocellulosic biomass and its prospects in Vietnam. International Journal of Hydrogen Energy 47(7):4394–425. doi:10.1016/j.ijhydene.2021.11.091.
  • Hoang, A.T., H.C. Ong, I.M.R. Fattah, C.T. Chong, C.K. Cheng, R. Sakthivel, et al. 2021. Progress on the lignocellulosic biomass pyrolysis for biofuel production toward environmental sustainability. Fuel Processing Technology 223:106997. doi:10.1016/j.fuproc.2021.106997.
  • Hoang, A.T., and V.V. Pham. 2019. Impact of jatropha oil on engine performance, emission characteristics, deposit formation, and lubricating oil degradation. Combustion Science and Technology 191(3):504–19. doi:10.1080/00102202.2018.1504292.
  • Hoang, A.T., N. Sandro, A.I. Olcer, H.C. Ong, W.-H. Chen, C.T. Chong, et al. 2021. Impacts of COVID-19 pandemic on the global energy system and the shift progress to renewable energy: Opportunities, challenges, and policy implications. Energy Policy 154:112322. doi:10.1016/j.enpol.2021.112322.
  • Hwang, J., D. Qi, Y. Jung, and C. Bae. 2014. Effect of injection parameters on the combustion and emission characteristics in a common-rail direct injection diesel engine fueled with waste cooking oil biodiesel. Renewable Energy 63:9–17. doi:10.1016/j.renene.2013.08.051
  • Jayabal, R., L. Thangavelu, and S. Subramani. 2020. Combined effect of oxygenated additives, injection timing and EGR on combustion, performance and emission characteristics of a CRDi diesel engine powered by sapota biodiesel/diesel blends. Fuel 276:118020. doi:10.1016/j.fuel.2020.118020
  • Jiang, P., Y.V. Fan, and J.J. Klemeš. 2021. Impacts of COVID-19 on energy demand and consumption: Challenges, lessons and emerging opportunities. Applied Energy 285:116441. doi:10.1016/j.apenergy.2021.116441
  • J, E., M. Pham, Y. Deng, T. Nguyen, V. Duy, D. Le, et al. 2018. Effects of injection timing and injection pressure on performance and exhaust emissions of a common rail diesel engine fueled by various concentrations of fish-oil biodiesel blends. Energy 149:979–89. doi:10.1016/j.energy.2018.02.053.
  • Karthickeyan, V., B. Ashok, S. Thiyagarajan, K. Nanthagopal, V.E. Geo, and B. Dhinesh. 2020. Comparative analysis on the influence of antioxidants role with Pistacia khinjuk oil biodiesel to reduce emission in diesel engine. Heat and Mass Transfer 56(4):1275–92. doi:10.1007/s00231-019-02797-6.
  • Kumar, A.N., P.S. Kishore, K.B. Raju, N. Kasianantham, and A. Bragadeshwaran. 2019. Engine parameter optimization of palm oil biodiesel as alternate fuel in CI engine. Environmental Science and Pollution Research 26(7):6652–76. doi:10.1007/s11356-018-04084-z.
  • La Peña L, D., R. Guo, X. Cao, X. Ni, and W. Zhang. 2022. Accelerating the energy transition to achieve carbon neutrality. Resources, Conservation and Recycling 177:105957. doi:10.1016/j.resconrec.2021.105957
  • Lešnik, L., B. Vajda, Z. Žunič, L. Škerget, and B. Kegl. 2013. The influence of biodiesel fuel on injection characteristics, diesel engine performance, and emission formation. Applied Energy 111:558–70. doi:10.1016/j.apenergy.2013.05.010
  • Lingesan, S., K. Annamalai, M. Parthasarathy, K.M. Ramalingam, B. Dhinesh, and J.I.J. Lalvani. 2018. Production of Garcinia gummi-gutta methyl ester (GGME) as a potential alternative feedstock for existing unmodified DI diesel engine: Combustion, performance, and emission characteristics. Journal of Testing and Evaluation 46(6):2661–78. doi:10.1520/JTE20170246.
  • Ming, C., I.M. Rizwanul Fattah, Q.N. Chan, P.X. Pham, P.R. Medwell, S. Kook, et al. 2018. Combustion characterization of waste cooking oil and canola oil based biodiesels under simulated engine conditions. Fuel 224:167–77. doi:10.1016/j.fuel.2018.03.053.
  • Mishra, R.K., Soota T, Singh R. Effect of variable compression ratio on performance of a diesel engine fueled with karanja biodiesel and its blends. IOP Conference Series: Materials Science and Engineering. 2017;225:012064.
  • Mohamed, B.A., I.M.R. Fattah, B. Yousaf, and S. Periyasamy. 2022. Effects of the COVID-19 pandemic on the environment, waste management, and energy sectors: A deeper look into the long-term impacts. Environmental Science and Pollution Research 29(31):46438–57. doi:10.1007/s11356-022-20259-1.
  • Mohamed Shameer, P., K. Ramesh, R. Sakthivel, and R. Purnachandran. 2017. Effects of fuel injection parameters on emission characteristics of diesel engines operating on various biodiesel: A review. Renewable and Sustainable Energy Reviews 67: 1267–81. doi:10.1016/j.rser.2016.09.117
  • More, G.V., S.R. Koli, Y.V.H. Rao, P.I. Prasad, and B.N. Rao. 2020. Effect of compression ratio on compression ignition engine with RUCO biodiesel/diethyl ether/diesel fuel blends. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–20. doi:10.1080/15567036.2020.1785593.
  • Nair, J.N., Y.V.V. SatyanarayanaMurthy, and S. Javed. 2020. Combustion and emission characteristics of light duty diesel engine fueled with transesterified algae biodiesel by K2CO3/ZnO heterogeneous base catalyst. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–13. doi:10.1080/15567036.2020.1779415.
  • Nayak, S.K., A.T. Hoang, S. Nižetić, X.P. Nguyen, and T.H. Le. 2022. Effects of advanced injection timing and inducted gaseous fuel on performance, combustion and emission characteristics of a diesel engine operated in dual-fuel mode. Fuel 310:122232. doi:10.1016/j.fuel.2021.122232
  • Palash, S.M., M.A. Kalam, H.H. Masjuki, B.M. Masum, I.M. Rizwanul Fattah, and M. Mofijur. 2013. Impacts of biodiesel combustion on NOx emissions and their reduction approaches. Renewable and Sustainable Energy Reviews 23:473–90.doi: 10.1016/j.rser.2013.03.003
  • Qi, D., L. Ma, R. Chen, X. Jin, and M. Xie. 2021. Effects of EGR rate on the combustion and emission characteristics of diesel-palm oil-ethanol ternary blends used in a CRDI diesel engine with double injection strategy. Applied Thermal Engineering 199:117530. doi:10.1016/j.applthermaleng.2021.117530
  • Rajak, U., P. Nashine, and T.N. Verma. 2019. Assessment of diesel engine performance using spirulina microalgae biodiesel. Energy 166:1025–36. doi:10.1016/j.energy.2018.10.098
  • Ramalingam, K., A. Kandasamy, D. Balasubramanian, M. Palani, T. Subramanian, E.G. Varuvel, et al. 2020. Forcasting of an ANN model for predicting behaviour of diesel engine energised by a combination of two low viscous biofuels. Environmental Science and Pollution Research 27(20):24702–22. doi:10.1007/s11356-019-06222-7.
  • Rami Reddy, S., G. Murali, A. Ahamad Shaik, V. Dhana Raju, and M.B.S. Sreekara Reddy. 2021. Experimental evaluation of diesel engine powered with waste mango seed biodiesel at different injection timings and EGR rates. Fuel 285: 119047. doi:10.1016/j.fuel.2020.119047
  • Sander, K., and G.S. Murthy. 2010. Life cycle analysis of algae biodiesel. The International Journal of Life Cycle Assessment 15(7):704–14. doi:10.1007/s11367-010-0194-1.
  • Sharma, A., and S. Murugan. 2015. Combustion, performance and emission characteristics of a DI diesel engine fuelled with non-petroleum fuel: A study on the role of fuel injection timing. Journal of the Energy Institute 88(4):364–75. doi:10.1016/j.joei.2014.11.006.
  • Silitonga, A.S., H.H. Masjuki, H.C. Ong, A.H. Sebayang, S. Dharma, F. Kusumo, et al. 2018. Evaluation of the engine performance and exhaust emissions of biodiesel-bioethanol-diesel blends using kernel-based extreme learning machine. Energy 159:1075–87. doi:10.1016/j.energy.2018.06.202.
  • Simsek, S., and S. Uslu. 2020. Determination of a diesel engine operating parameters powered with canola, safflower and waste vegetable oil based biodiesel combination using response surface methodology (RSM). Fuel 270:117496. doi:10.1016/j.fuel.2020.117496
  • Srinidhi, C., A. Madhusudhan, and S.V. Channapattana. 2019. Comparative analysis of exhaust gas recirculation and nanoparticles on the performance and emission of diesel engine fuelled with Neem biodiesel blend. International Journal of Ambient Energy 1–10.
  • Subramaniam, M., J.M. Solomon, V. Nadanakumar, S. Anaimuthu, and R. Sathyamurthy. 2020. Experimental investigation on performance, combustion and emission characteristics of DI diesel engine using algae as a biodiesel. Energy Reports 6:1382–92. doi:10.1016/j.egyr.2020.05.022
  • Vallapudi, D.R., H.K. Makineni, S.K. Pisipaty, and H. Venu. 2018. Combined impact of EGR and injection pressure in performance improvement and NOx control of a DI diesel engine powered with tamarind seed biodiesel blend. Environmental Science and Pollution Research 25(36):36381–93. doi:10.1007/s11356-018-3540-7.
  • Venu, H., L. Subramani, and V.D. Raju. 2019. Emission reduction in a DI diesel engine using exhaust gas recirculation (EGR) of palm biodiesel blended with TiO2 nano additives. Renewable Energy 140:245–63. doi:10.1016/j.renene.2019.03.078
  • Vigneswaran, R., D. Balasubramanian, and B.D.S. Sastha. 2021. Performance, emission and combustion characteristics of unmodified diesel engine with titanium dioxide (TiO2) nano particle along with water-in-diesel emulsion fuel. Fuel 285:119115. doi:10.1016/j.fuel.2020.119115
  • Vijay Kumar, M., A. Veeresh Babu, and P. Ravi Kumar. 2018. The impacts on combustion, performance and emissions of biodiesel by using additives in direct injection diesel engine. Alexandria Engineering Journal 57(1):509–16. doi:10.1016/j.aej.2016.12.016.
  • Yin, B., J. Wang, K. Yang, and H. Jia. 2014. Optimization of EGR and split injection strategy for light vehicle diesel low temperature combustion. International Journal of Automotive Technology 15(7):1043–51. doi:10.1007/s12239-014-0108-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.