459
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Environmental and exergoeconomic assessments of a novel biomass gasification based solid oxide fuel cell and heat engine hybrid energy system

, , , , &
Pages 8490-8511 | Received 24 May 2022, Accepted 27 Aug 2022, Published online: 13 Sep 2022

References

  • Abd Alla, G. 2002. Computer simulation of a four stroke spark ignition engine. Energy Conversion and Management 43 (8):1043–61. doi:10.1016/S0196-8904(01)00092-9.
  • Abraham, M. 2017. Encyclopedia of sustainable technologies. Elsevier. Accessed 4th July 2017.
  • Aghaie, M., M. Mehrpooya, and F. Pourfayaz. 2016.Introducing an integrated chemical looping hydrogen production, inherent carbon capture and solid oxide fuel cell biomass fueled power plant process configuration. Energy Conversion and Management 124: 141–54.doi: 10.1016/j.enconman.2016.07.001
  • Ahmadi, M. H., M. Mehrpooya, and F. Pourfayaz. 2016.Exergoeconomic analysis and multi objective optimization of performance of a Carbon dioxide power cycle driven by geothermal energy with liquefied natural gas as its heat sink. Energy Conversion and Management 119: 422–34.doi: 10.1016/j.enconman.2016.04.062
  • Al-Hamed, K. H. M., and I. Dincer. 2020.A novel ammonia molten alkaline fuel cell based integrated powering system for clean rail transportation. Energy 201: 117620.doi: 10.1016/j.energy.2020.117620
  • Alaswad, A., Baroutaji A, Rezk A, Ramadan M, Olabi AG. 2020. Advances in solid oxide fuel cell materials. In Reference module in materials science and materials engineering, Amsterdam, Netherlands: Elsevier.
  • Alayi, R, Seydnouri SR, Jahangeri M, Maarif A. Optimization, sensitivity analysis, and techno-economic evaluation of a multi-source system for an urban community: A case study. Renewable Energy Research and Applications. 2022 Jan 1;3(1):21-30.
  • Alayi, R., R. Kumar, S. R. Seydnouri, M. H. Ahmadi, and A. Issakhov. 2021. Energy, environment and economic analyses of a parabolic trough concentrating photovoltaic/thermal system. International Journal of Low-Carbon Technologies 16 (2):570–76. doi:10.1093/ijlct/ctaa086.
  • Alayi, R., and J. Velayti. 2021. Modeling/optimization and effect of environmental variables on energy production based on PV/Wind turbine hybrid system. Jurnal Ilmiah Teknik Elektro Komputer Dan Informatika (JITEKI) 7 (1):101–07. doi:10.26555/jiteki.v7i1.20515.
  • Ansarinasab, H., H. Hajabdollahi, and M. Fatimah. 2021.Life cycle assessment (LCA) of a novel geothermal-based multigeneration system using LNG cold energy- integration of Kalina cycle, Stirling engine, desalination unit and magnetic refrigeration system. Energy 231: 120888.doi: 10.1016/j.energy.2021.120888
  • Anvari, S., S. Khalilarya, and V. Zare. 2018.Exergoeconomic and environmental analysis of a novel configuration of solar-biomass hybrid power generation system. Energy 165: 776–89.doi: 10.1016/j.energy.2018.10.018
  • Arslan, O., E. Acikkalp, and G. Genc. 2022. A multi-generation system for hydrogen production through the high-temperature solid oxide electrolyzer integrated to 150 MW coal-fired steam boiler. Fuel. Vol. 315, p. 123201.
  • Asadullah, M. 2014.Biomass gasification gas cleaning for downstream applications: A comparative critical review. Renewable and Sustainable Energy Reviews 40: 118–32.doi: 10.1016/j.rser.2014.07.132
  • Burulday, M. E., M. S. Mert, and N. Javani. 2022. Thermodynamic analysis of a parabolic trough solar power plant integrated with a biomass-based hydrogen production system. International Journal of Hydrogen Energy 47 (45):19481–501. doi:10.1016/j.ijhydene.2022.02.163.
  • Cao, Y., et al. 2022. Combined heat and power system based on a proton conducting SOFC and a supercritical CO2 Brayton cycle triggered by biomass gasification. International Journal of Hydrogen Energy. 47(8):5439–52. doi:10.1016/j.ijhydene.2021.11.130.
  • Cavalli, A., A. Fernandes, and P. Aravind. 2021.Thermodynamic analysis of an improved integrated biomass gasifier solid oxide fuel cell micro combined heat and power system. Energy 231: 120945. doi:10.1016/j.energy.2021.120945
  • Chehade, G., S. Lytle, H. Ishaq, and I. Dincer. 2020.Hydrogen production by microwave based plasma dissociation of water. Fuel 264: 116831.doi: 10.1016/j.fuel.2019.116831
  • Chen, W.-H., et al. 2022. Biomass-Derived biochar: From production to application in removing heavy metal-contaminated water. Process Safety and Environmental Protection 160:704–33. doi:10.1016/j.psep.2022.02.061.
  • Chen, Y., L. Feng, I. B. Mansir, M. Taghavi, and K. Sharma. 2022.A new coupled energy system consisting of fuel cell, solar thermal collector, and organic Rankine cycle; generation and storing of electrical energy. Sustainable Cities and Society 81: 103824.doi: 10.1016/j.scs.2022.103824
  • Chen, H., D. Lu, J. An, S. Qiao, Y. Dong, X. Jiang, G. Xu, and T. Liu. 2022.Thermo-Economic analysis of a novel biomass gasification-based power system integrated with a supercritical CO2 cycle and a coal-fired power plant. Energy Conversion and Management 266: 115860.doi: 10.1016/j.enconman.2022.115860
  • Cheng, C., et al. 2021. Performance assessment of a novel biomass-based solid oxide fuel cell power generation cycle. Economic Analysis and Optimization Energy Energy 224:120134.
  • Cheng, S., G. Zhao, M. Gao, Y. Shi, M. Huang, and M. Marefati. 2021. A new hybrid solar photovoltaic/phosphoric acid fuel cell and energy storage system. Energy and Exergy Performance International Journal of Hydrogen Energy International Journal of Hydrogen Energy 46 (11):8048–66. doi:10.1016/j.ijhydene.2020.11.282.
  • Dahiya, A. 2014. Bioenergy: Biomass to biofuels. Cambridge, Massachusetts: Academic Press.
  • Detchusananard, T., S. Sharma, F. Maréchal, and A. Arpornwichanop. 2019.Generation and selection of pareto-optimal solution for the sorption enhanced steam biomass gasification system with solid oxide fuel cell. Energy Conversion and Management 196: 1420–32.doi: 10.1016/j.enconman.2019.06.033
  • Downs, E. S. 2008. China’s “new” energy administration. The China Business Review 35 (6):42–45.
  • Farajollahi, A. H., M. Rostami, and M. Marefati. 2022. A hybrid-electric propulsion system for an unmanned aerial vehicle based on proton exchange membrane fuel cell, battery, and electric motor. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 44 (1):934–50. doi:10.1080/15567036.2022.2051644.
  • Faro, M. L., O. Barbera, and G. Giacoppo. 2021. Hybrid technologies for power generation Cambridge, Massachusetts: Academic Press.
  • Gholamian, E., V. Zare, and S. M. Mousavi. 2016. Integration of biomass gasification with a solid oxide fuel cell in a combined cooling, heating and power system: A thermodynamic and environmental analysis. International Journal of Hydrogen Energy 41 (44):20396–406. doi:10.1016/j.ijhydene.2016.07.217.
  • Ghorbani, B., M. Mehrpooya, and K. Shokri. 2020. Developing an integrated structure for simultaneous generation of power and liquid CO2 using parabolic solar collectors, solid oxide fuel cell, and post-combustion CO2 separation unit. Applied Thermal Engineering 179:115687.
  • Habibollahzade, A., E. Gholamian, and A. Behzadi. 2019.Multi-Objective optimization and comparative performance analysis of hybrid biomass-based solid oxide fuel cell/solid oxide electrolyzer cell/gas turbine using different gasification agents. Applied Energy 233-234: 985–1002.doi: 10.1016/j.apenergy.2018.10.075
  • Hemmatabady, H., M. Mehrpooya, and S. A. Mousavi. 2022. Development of a novel hybrid SOFC/GT system and transcritical CO2 cycle for CCHP purpose in the district scale. Journal of Thermal Analysis and Calorimetry 147 (1):489–507. doi:10.1007/s10973-020-10306-9.
  • Holagh, S. G., M. A. Haghghi, Z. Mohammadi, and A. Chitsaz. 2020. Exergoeconomic and environmental investigation of an innovative poly‐generation plant driven by a solid oxide fuel cell for production of electricity, cooling, desalinated water, and hydrogen. International Journal of Energy Research 44 (13):10126–54. doi:10.1002/er.5626.
  • Hosseinpour, J., A. Chitsaz, L. Liu, and Y. Gao. 2020.Simulation of eco-friendly and affordable energy production via solid oxide fuel cell integrated with biomass gasification plant using various gasification agents. Renewable Energy 145: 757–71.doi: 10.1016/j.renene.2019.06.033
  • Karimi, M. H., N. Chitgar, M. A. Emadi, P. Ahmadi, and M. A. Rosen. 2020. Performance assessment and optimization of a biomass-based solid oxide fuel cell and micro gas turbine system integrated with an organic Rankine cycle. International Journal of Hydrogen Energy 45 (11):6262–77. doi:10.1016/j.ijhydene.2019.12.143.
  • Lazzaretto, A., and G. Tsatsaronis. 2006. SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems. Energy 31 (8):1257–89. doi:10.1016/j.energy.2005.03.011.
  • Li, Y., Y. Pang, H. Tu, F. Torrigino, S. M. A. Biollaz, Z. Li, Y. Huang, X. Yin, F. Grimm, J. Karl, et al. 2021. Impact of syngas from biomass gasification on solid oxide fuel cells: A review study for the energy transition. Energy Conversion and Management 250:114894. doi:10.1016/j.enconman.2021.114894.
  • Lin, G., X. Wang, and A. Rezazadeh. 2021.Electrical energy storage from a combined energy process based on solid oxide fuel cell and use of waste heat. Sustainable Energy Technologies and Assessments 48: 101663.doi: 10.1016/j.seta.2021.101663
  • Ma, S., et al. 2022. Techno-Economic evaluation of a combined biomass gasification-solid oxide fuel cell system for ethanol production via syngas fermentation. Fuel. Vol. 324p. 124395
  • Ma, L., J. Mao, and M. Marefati. 2022.Assessment of a new coal-fired power plant integrated with solid oxide fuel cell and parabolic trough solar collector. Process Safety and Environmental Protection 163: 340–52. doi: 10.1016/j.psep.2022.05.053
  • Malek, A. B. M. A., M. Hasanuzzaman, N. A. Rahim, and Y. A. Al Turki. 2017.Techno-Economic analysis and environmental impact assessment of a 10 MW biomass-based power plant in Malaysia. Journal of Cleaner Production 141: 502–13.doi: 10.1016/j.jclepro.2016.09.057
  • Marefati, M., and M. Mehrpooya. 2019.Introducing a hybrid photovoltaic solar, proton exchange membrane fuel cell and thermoelectric device system. Sustainable Energy Technologies and Assessments 36: 100550.doi: 10.1016/j.seta.2019.100550
  • Marefati, M., and M. Mehrpooya. 2019.Introducing and investigation of a combined molten carbonate fuel cell, thermoelectric generator, linear fresnel solar reflector and power turbine combined heating and power process. Journal of Cleaner Production 240: 118247.doi: 10.1016/j.jclepro.2019.118247
  • Marefati, M., M. Mehrpooya, and S. A. Mousavi. 2019. Introducing an integrated SOFC, linear Fresnel solar field, Stirling engine and steam turbine combined cooling, heating and power process. International Journal of Hydrogen Energy 44 (57):30256–79. doi:10.1016/j.ijhydene.2019.09.074.
  • Marefati, M., M. Mehrpooya, and M. B. Shafii. 2019.A hybrid molten carbonate fuel cell and parabolic trough solar collector, combined heating and power plant with carbon dioxide capturing process. Energy Conversion and Management 183: 193–209.doi: 10.1016/j.enconman.2019.01.002
  • Mehrpooya, M., H. Ansarinasab, and S. A. Mousavi. 2021.Life cycle assessment and exergoeconomic analysis of the multi-generation system based on fuel cell for methanol, power, and heat production. Renewable Energy 172: 1314–32.doi: 10.1016/j.renene.2021.03.111
  • Mei, B., Y. Qin, and M. Taghavi. 2021.Thermodynamic performance of a new hybrid system based on concentrating solar system, molten carbonate fuel cell and organic Rankine cycle with CO2 capturing analysis. Process Safety and Environmental Protection 146: 531–51.doi: 10.1016/j.psep.2020.12.001
  • Mianaei, P. K., et al. 2022. Chance-Constrained programming for optimal scheduling of combined cooling, heating, and power-based microgrid coupled with flexible technologies. Sustainable Cities and Society 77:103502. doi:10.1016/j.scs.2021.103502.
  • Mojaver, P., S. Khalilarya, and A. Chitsaz. 2019.Multi-Objective optimization using response surface methodology and exergy analysis of a novel integrated biomass gasification, solid oxide fuel cell and high-temperature sodium heat pipe system. Applied Thermal Engineering 156: 627–39.doi: 10.1016/j.applthermaleng.2019.04.104
  • Ozcan, H., and I. Dincer. 2015. Performance evaluation of an SOFC based trigeneration system using various gaseous fuels from biomass gasification. International Journal of Hydrogen Energy 40 (24):7798–807. doi:10.1016/j.ijhydene.2014.11.109.
  • Peng, M.-Y.-P., C. Chen, X. Peng, and M. Marefati. 2020.Energy and exergy analysis of a new combined concentrating solar collector, solid oxide fuel cell, and steam turbine CCHP system. Sustainable Energy Technologies and Assessments 39: 100713.doi: 10.1016/j.seta.2020.100713
  • Pongratz, G., V. Subotić, C. Hochenauer, R. Scharler, and A. Anca-Couce. 2022.Solid oxide fuel cell operation with biomass gasification product gases: Performance- and carbon deposition risk evaluation via a CFD modelling approach. Energy 244: 123085.doi: 10.1016/j.energy.2021.123085
  • Qiu, Q., M. Zhou, W. Cai, Q. Zhou, Y. Zhang, W. Wang, M. Liu, and J. Liu. 2019.A comparative investigation on direct carbon solid oxide fuel cells operated with fuels of biochar derived from wheat straw, corncob, and bagasse. Biomass & Bioenergy 121: 56–63.doi: 10.1016/j.biombioe.2018.12.016
  • Rosendahl, L. 2013. Biomass combustion science, technology and engineering. Amsterdam, Netherlands: Elsevier.
  • Rostami, M., et al. 2022. Introducing and evaluation of a new propulsion system composed of solid oxide fuel cell and downstream cycles; usage in unmanned aerial vehicles. International Journal of Hydrogen Energy. 47(28):13693–709. doi:10.1016/j.ijhydene.2022.02.104.
  • Rostamnejad Takleh, H., V. Zare, F. Mohammadkhani, and M. M. Sadeghiazad. 2022.Proposal and thermoeconomic assessment of an efficient booster-assisted CCHP system based on solar-geothermal energy. Energy 246: 123360.doi: 10.1016/j.energy.2022.123360
  • Roy, D., and S. Ghosh. 2017. Energy and exergy analyses of an integrated biomass gasification combined cycle employing solid oxide fuel cell and organic Rankine cycle. Clean Technologies and Environmental Policy 19 (6):1693–709. doi:10.1007/s10098-017-1358-5.
  • Roy, D., S. Samanta, and S. Ghosh. 2019.Techno-Economic and environmental analyses of a biomass based system employing solid oxide fuel cell, externally fired gas turbine and organic Rankine cycle. Journal of Cleaner Production 225: 36–57.doi: 10.1016/j.jclepro.2019.03.261
  • Saberi Shahmarvandi, N., et al. 2022. Effects of different target solar fractions on providing heat required for space heating, sanitary hot water, and swimming pool in Iran: A case study in cold climate. Journal of Engineering :2022.
  • Salehi, A., S. M. Mousavi, A. Fasihfar, and M. Ravanbakhsh. 2019. Energy, exergy, and environmental (3E) assessments of an integrated molten carbonate fuel cell (MCFC), Stirling engine and organic Rankine cycle (ORC) cogeneration system fed by a biomass-fueled gasifier. International Journal of Hydrogen Energy 44 (59):31488–505. doi:10.1016/j.ijhydene.2019.10.038.
  • Sigurjonsson, H. Æ., and L. R. Clausen. 2018.Solution for the future smart energy system: A polygeneration plant based on reversible solid oxide cells and biomass gasification producing either electrofuel or power. Applied Energy 216: 323–37.doi: 10.1016/j.apenergy.2018.02.124
  • Subotić, V., A. Baldinelli, L. Barelli, R. Scharler, G. Pongratz, C. Hochenauer, and A. Anca-Couce. 2019.Applicability of the SOFC technology for coupling with biomass-gasifier systems: Short- and long-term experimental study on SOFC performance and degradation behaviour. Applied Energy 256: 113904.doi: 10.1016/j.apenergy.2019.113904
  • Tan, L., X. Dong, Z. Gong, and M. Wang. 2017.Investigation on performance of an integrated SOFC-GE-KC power generation system using gaseous fuel from biomass gasification. Renewable Energy 107: 448–61.doi: 10.1016/j.renene.2017.02.012
  • Wang, S., et al. 2022. Numerical assessment of a hybrid energy system based on solid oxide electrolyzer, solar energy and molten carbonate fuel cell for the generation of electrical energy and hydrogen fuel with electricity storage option. Journal of Energy Storage 54:105274. doi:10.1016/j.est.2022.105274.
  • Yazdanifard, F., E. Ebrahimnia-Bajestan, and M. Ameri. 2017.Performance of a parabolic trough concentrating photovoltaic/thermal system: Effects of flow regime, design parameters, and using nanofluids. Energy Conversion and Management 148: 1265–77.doi: 10.1016/j.enconman.2017.06.075
  • Yusup, S., and N. A. Rashidi. 2021. Value-Chain of biofuels: Fundamentals, technology, and standardization. Amsterdam, Netherlands: Elsevier.
  • Zareei, J., and A. Rohani. 2020. Optimization and study of performance parameters in an engine fueled with hydrogen. International Journal of Hydrogen Energy 45 (1):322–36. doi:10.1016/j.ijhydene.2019.10.250.
  • Zhang, X., R. Zeng, Q. Deng, X. Gu, H. Liu, Y. He, K. Mu, X. Liu, H. Tian, H. Li, et al. 2019. Energy, exergy and economic analysis of biomass and geothermal energy based CCHP system integrated with compressed air energy storage (CAES). Energy Conversion and Management 199:111953. doi:10.1016/j.enconman.2019.111953.
  • Zhu, P., Z. Wu, J. Yao, L. Guo, H. Yan, S. N. Nyamsi, S. Kurko, F. Yang, and Z. Zhang. 2021.Multi-Physics field modeling of biomass gasification syngas fueled solid oxide fuel cell. Journal of Power Sources 512: 230470.doi: 10.1016/j.jpowsour.2021.230470
  • Zhu, P., J. Yao, Z. Wu, S.-M. Huang, M. Radzi Abu Mansor, F. Yang, and Z. Zhang. 2022.Construction of a transient multi-physics model of solid oxide fuel cell fed by biomass syngas considering the carbon deposition and temperature effect. Chemical Engineering Journal 442: 136159.doi: 10.1016/j.cej.2022.136159

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.