185
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Waste heat recovery of an UAV propulsion system based on PEM fuel cell by a novel transcritical CO2 - LNG hybrid cycle; thermodynamic and multiple linear regression analyses

ORCID Icon, , , , ORCID Icon, & show all

References

  • Aabid, A., B. Parveez, N. Parveen, S. A. Khan, J. M. Zayan, and O. Shabbir. 2022. Reviews on design and development of unmanned aerial vehicle (drone) for different applications. Journal of Mechanical Engineering Research and Developments 45 (2):53–69.
  • Ahmadi, M. H., A. Mohammadi, F. Pourfayaz, M. Mehrpooya, M. Bidi, A. Valero, and S. Uson. 2016. Thermodynamic analysis and optimization of a waste heat recovery system for proton exchange membrane fuel cell using transcritical carbon dioxide cycle and cold energy of liquefied natural gas. Journal of Natural Gas Science and Engineering 34:428–38. doi:10.1016/j.jngse.2016.07.014.
  • Bradley, T. H., B. A. Moffitt, T. F. Fuller, D. N. Mavris, and D. E. Parekh. 2009. Comparison of design methods for fuel-cell-powered unmanned aerial vehicles. Journal of Aircraft 46 (6):1945–56. doi:10.2514/1.41658.
  • Bradley, T., B. Moffitt, D. Parekh, & D. Mavris (2007, January). Flight test results for a fuel cell unmanned aerial vehicle. In 45th AIAA aerospace sciences meeting and exhibit (p. 32).
  • Cao, Y., E. B. Hani, S. Khanmohammadi, and P. Ahmadi. 2022. The optimum solution for a biofuel-based fuel cell waste heat recovery from biomass for hydrogen production. Fuel 317:123380. doi:10.1016/j.fuel.2022.123380.
  • Chen, Y. 2011. Thermodynamic cycles using carbon dioxide as working fluid, Vol. 80, pp. 5451–54. Stockholm, Sweden: KTH.
  • Chen, Y., P. Lundqvist, A. Johansson, and P. Platell. 2006. A comparative study of the carbon dioxide transcritical power cycle compared with an organic Rankine cycle with R123 as working fluid in waste heat recovery. Applied Thermal Engineering 26 (17–18):2142–47. doi:10.1016/j.applthermaleng.2006.04.009.
  • Depcik, C., T. Cassady, B. Collicott, S. P. Burugupally, X. Li, S. S. Alam …, and J. Hobeck, J. Hobeck. 2020. Comparison of lithium ion batteries, hydrogen fueled combustion engines, and a hydrogen fuel cell in powering a small unmanned aerial vehicle. Energy Conversion and Management 207:112514. doi:10.1016/j.enconman.2020.112514.
  • Dudek, M., P. Tomczyk, P. Wygonik, M. Korkosz, P. Bogusz, and B. Lis. 2013. Hybrid fuel cell–battery system as a main power unit for small unmanned aerial vehicles (UAV). International Journal of Electrochemical Science 8 (6):8442–63.
  • Elmeseiry, N., N. Alshaer, and T. Ismail. 2021. A detailed survey and future directions of unmanned aerial vehicles (UAVs) with potential applications. Aerospace 8 (12):363. doi:10.3390/aerospace8120363.
  • Ezoji, H., and S. S. M. Ajarostaghi. 2020. Thermodynamic-CFD analysis of waste heat recovery from homogeneous charge compression ignition (HCCI) engine by recuperative organic rankine cycle (RORC): Effect of operational parameters. Energy 205:117989. doi:10.1016/j.energy.2020.117989.
  • Feng, Y., T. Hung, K. Greg, Y. Zhang, B. Li, and J. Yang. 2015. Thermoeconomic comparison between pure and mixture working fluids of organic Rankine cycles (ORCs) for low temperature waste heat recovery. Energy Conversion and Management 106:859–72. doi:10.1016/j.enconman.2015.09.042.
  • Feng, Y., Y. Zhang, B. Li, J. Yang, and Y. Shi. 2015. Sensitivity analysis and thermoeconomic comparison of ORCs (organic Rankine cycles) for low temperature waste heat recovery. Energy 82:664–77. doi:10.1016/j.energy.2015.01.075.
  • Furrutter, M. K., & J. Meyer (2009, September). Small fuel cell powering an unmanned aerial vehicle. In AFRICON 2009 (pp. 1–6). IEEE
  • Gao, T., Y. Zhang, C. Li, Y. Wang, Q. An, B. Liu, Z. Said, and S. Sharma. 2021.Grindability of ‎carbon fiber reinforced polymer using CNT biological lubricant. Scientific Reports 11: ‎‎22535.doi: 10.1038/s41598-021-02071-y
  • Holik, M., M. Živić, Z. Virag, A. Barac, M. Vujanović, and J. Avsec. 2021. Thermo-Economic optimization of a Rankine cycle used for waste-heat recovery in biogas cogeneration plants. Energy Conversion and Management 232:113897. doi:10.1016/j.enconman.2021.113897.
  • Hu, Y., J. Xiang Qing, Z. H. Liu, Z. J. Conrad, J. N. Cao, and X. P. Zhang. 2021. Hovering efficiency optimization of the ducted propeller with weight penalty taken into account. Aerospace Science and Technology 117:106937. doi:10.1016/j.ast.2021.106937.
  • Javadi, H., S. S. M. Ajarostaghi, S. S. Mousavi, and M. Pourfallah. 2019. Thermal analysis of a triple helix ground heat exchanger using numerical simulation and multiple linear regression. Geothermics 81:53–73. doi:10.1016/j.geothermics.2019.04.005.
  • Kang, K., S. Park, S. O. Cho, K. Choi, and H. Ju. 2014. Development of lightweight 200‐W direct methanol fuel cell system for unmanned aerial vehicle applications and flight demonstration. Fuel Cells 14 (5):694–700. doi:10.1002/fuce.201300244.
  • Kang, K., H. Yoo, D. Han, A. Jo, J. Lee, and H. Ju. 2016. Modeling and simulations of fuel cell systems for combined heat and power generation. International Journal of Hydrogen Energy 41 (19):8286–95. doi:10.1016/j.ijhydene.2015.11.089.
  • Karunarathne, L., J. T. Economou, and K. Knowles. 2012. Power and energy management system for fuel cell unmanned aerial vehicle. Proceedings of the Institution of Mechanical Engineers: Part G Journal of Aerospace Engineering 226 (4):437–54. doi:10.1177/0954410011409995.
  • Lapeña-Rey, N., J. A. Blanco, E. Ferreyra, J. L. Lemus, S. Pereira, and E. Serrot. 2017. A fuel cell powered unmanned aerial vehicle for low altitude surveillance missions. International Journal of Hydrogen Energy 42 (10):6926–40. doi:10.1016/j.ijhydene.2017.01.137.
  • Lee, B., S. Kwon, P. Park, and K. Kim. 2014. Active power management system for an unmanned aerial vehicle powered by solar cells, a fuel cell, and batteries. IEEE Transactions on Aerospace and Electronic Systems 50 (4):3167–77. doi:10.1109/TAES.2014.130468.
  • Li, S., D. Liu, L. Qin, and G. Xie. 2021. Study on convective heat transfer characteristics of supercritical CO2 in Printed circuit heat exchanger under ocean condition. In ASME International mechanical engineering Congress and Exposition, Vol. 85673, p. V011T11A070. American Society of Mechanical Engineers. November.
  • Liu, D., S. Li, G. Xie, and Y. Chen. 2022. Flow and heat transfer of supercritical CO2 in a vertical tube under ocean rolling motion. Journal of Heat Transfer 144 (2). doi:10.1115/1.4052839.
  • Li, J., F. Wang, and Y. He. 2020. Electric vehicle routing problem with battery swapping considering energy consumption and carbon emissions. Sustainability 12 (24):10537. doi:10.3390/su122410537.
  • Minitab, I. 2014. MINITAB release 17: Statistical software for windows. Minitab Inc, USA 371.
  • Moffitt, B., T. Bradley, D. Parekh, & D. Mavris (2006, January). Design and performance validation of a fuel cell unmanned aerial vehicle. In 44th AIAA Aerospace Sciences Meeting and Exhibit (p. 823).
  • Naseri, A., M. Bidi, M. H. Ahmadi, and R. Saidur. 2017. Exergy analysis of a hydrogen and water production process by a solar-driven transcritical CO2 power cycle with Stirling engine. Journal of Cleaner Production 158:165–81. doi:10.1016/j.jclepro.2017.05.005.
  • Oh, T. H. 2018. Conceptual design of small unmanned aerial vehicle with proton exchange membrane fuel cell system for long endurance mission. Energy Conversion and Management 176:349–56. doi:10.1016/j.enconman.2018.09.036.
  • Okumus, E., F. G. B. San, O. Okur, B. E. Turk, E. Cengelci, M. Kilic …, and M. S. Yazici, M. Cavdar, A. Turkmen, M. S. Yazici. 2017. Development of boron-based hydrogen and fuel cell system for small unmanned aerial vehicle. International Journal of Hydrogen Energy 42 (4):2691–97. doi:10.1016/j.ijhydene.2016.09.009.
  • Omer, A. M. 2008.Energy, environment and sustainable development. Renewable and Sustainable Energy Reviews 12: 2265–300.doi: 10.1016/j.rser.2007.05.001
  • Pan, Z. F., L. An, and C. Y. Wen. 2019. Recent advances in fuel cells based propulsion systems for unmanned aerial vehicles. Applied Energy 240:473–85. doi:10.1016/j.apenergy.2019.02.079.
  • Penga, Ž., G. Radica, F. Barbir, and S. Nižetić. 2019. Coolant induced variable temperature flow field for improved performance of proton exchange membrane fuel cells. International Journal of Hydrogen Energy 44 (20):10102–19. doi:10.1016/j.ijhydene.2018.10.237.
  • Pourrahmani, H., H. Shakeri, & J. Van Herle (2022). Thermoelectric generator as the waste heat recovery unit of proton exchange membrane fuel cell: A numerical study. Energies, 15(9), 3018
  • Rostami, M., M. D. Manshadi, A. H. Farajollahi, and M. Marefati. 2022. Introducing and evaluation of a new propulsion system composed of solid oxide fuel cell and downstream cycles; usage in unmanned aerial vehicles. International Journal of Hydrogen Energy 47 (28):13693–709. doi:10.1016/j.ijhydene.2022.02.104.
  • Santos, D. F., R. B. Ferreira, D. S. Falcão, and A. M. F. R. Pinto. 2022.Evaluation of a fuel cell system designed for unmanned aerial vehicles. Energy 253: 124099.doi: 10.1016/j.energy.2022.124099
  • Savvaris, A., Y. Xie, K. Malandrakis, M. Lopez, & A. Tsourdos (2016, June). Development of a fuel cell hybrid-powered unmanned aerial vehicle. In 2016 24th Mediterranean Conference on Control and Automation (MED) (pp. 1242–47). IEEE
  • Sun, Z., J. Wang, Y. Dai, and J. Wang. 2012. Exergy analysis and optimization of a hydrogen production process by a solar-liquefied natural gas hybrid driven transcritical CO2 power cycle. International Journal of Hydrogen Energy 37 (24):18731–39. doi:10.1016/j.ijhydene.2012.08.028.
  • Sun, F., G. Xie, J. Song, S. Li, and C. N. Markides. 2021. Thermal characteristics of in-tube upward supercritical CO2 flows and a new heat transfer prediction model based on artificial neural networks (ANN). Applied Thermal Engineering 194:117067. doi:10.1016/j.applthermaleng.2021.117067.
  • Tang, L., Y. Zhang, C. Li, Z. Zhou, X. Nie, Y. Chen, H. Cao, B. Liu, N. Zhang, and Z. Said. 2022.‎Biological stability of water-based cutting fluids: Progress and application. Chinese Journal ‎of Mechanical Engineering 35: 1–24.doi: 10.1186/s10033-021-00667-z
  • Thu, K., B. B. Saha, K. J. Chua, and K. C. Ng. 2016. Performance investigation of a waste heat-driven 3-bed 2-evaporator adsorption cycle for cooling and desalination. International Journal of Heat and Mass Transfer 101:1111–22. doi:10.1016/j.ijheatmasstransfer.2016.05.127.
  • Tuo, H. January 2011. Analysis of a reheat carbon dioxide transcritical power cycle using a low temperature heat source. ASME International Mechanical Engineering Congress and Exposition 54907:219–25.
  • Wang, C., B. He, L. Yan, X. Pei, and S. Chen. 2014. Thermodynamic analysis of a low-pressure economizer based waste heat recovery system for a coal-fired power plant. Energy 65:80–90. doi:10.1016/j.energy.2013.11.084.
  • Wang, B., D. Zhao, W. Li, Z. Wang, Y. Huang, Y. You, and S. Becker. 2020. Current technologies and challenges of applying fuel cell hybrid propulsion systems in unmanned aerial vehicles. Progress in Aerospace Sciences 116:100620. doi:10.1016/j.paerosci.2020.100620.
  • Wilberforce, T., A. Baroutaji, B. Soudan, A. H. Al-Alami, and A. G. Olabi. 2019. Outlook of carbon capture technology and challenges. The Science of the Total Environment 657:56–72. doi:10.1016/j.scitotenv.2018.11.424.
  • Xia, G., Q. Sun, X. Cao, J. Wang, Y. Yu, and L. Wang. 2014. Thermodynamic analysis and optimization of a solar-powered transcritical CO2 (carbon dioxide) power cycle for reverse osmosis desalination based on the recovery of cryogenic energy of LNG (liquefied natural gas). Energy 66:643–53. doi:10.1016/j.energy.2013.12.029.
  • Zhang, X., Y. Tang, F. Zhang, and C. S. Lee. 2016. A novel aluminum–graphite dual‐ion battery. Advanced Energy Materials 6 (11):1502588. doi:10.1002/aenm.201502588.
  • Zhu, H., G. Xie, H. Yuan, and S. Nizetic. 2022. Thermodynamic assessment of combined supercritical CO2 cycle power systems with organic Rankine cycle or Kalina cycle. Sustainable Energy Technologies and Assessments 52:102166. doi:10.1016/j.seta.2022.102166.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.