407
Views
0
CrossRef citations to date
0
Altmetric
Review

The potential of pistachio shell-based activated carbons for metal removal from aqueous solutions: a review

ORCID Icon & ORCID Icon

References

  • Anastopoulos, I., I. Pashalidis, A. Hosseini-Bandegharaei, D. A. Giannakoudakis, A. Robalds, M. Usman, L. B. Escudero, Y. Zhou, J. C. Colmenares, A. Nunez-Delgado, et al. 2019. Agricultural biomass/waste as adsorbents for toxic metal decontamination of aqueous solutions. Journal of Molecular Liquids 295:111684. doi:10.1016/j.molliq.2019.111684.
  • Aslan, N. 2020. Accessed by 03.07.2022. https://arastirma.tarimorman.gov.tr.
  • Badescu, I. S., D. Bulgariu, I. Ahmad, and L. Bulgariu. 2018. Valorisation possibilities of exhausted biosorbents loaded with metal ions –a review. Journal of Environmental Management 224:288–97. doi:10.1016/j.jenvman.2018.07.066.
  • Banerjee, M., R. M. Basu, and S. K. Das. 2019. Adsorptive removal of Cu(II) by pistachio shell: Isotherm study, kinetic modelling and scale-up designing-continuous mode. Environmental Technology & Innovation 15:100419. doi:10.1016/j.eti.2019.100419.
  • Batman, T. C. 2022. Accessed by 03.07.2022. http://www.batman.gov.tr.
  • Bazan-Wozniak, A., P. Nowicki, and R. Pietrzak. 2017. The influence of activation procedure on the physicochemical and sorption properties of activated carbons prepared from pistachio nutshells for removal of NO2/H2S gases and dyes. Journal of Cleaner Production 152:211–22. doi:10.1016/j.jclepro.2017.03.114.
  • Benitez, A., J. Morales, and A. Caballero. 2020. Pistachio shell-derived carbon activated with phosphoric acid: A more efficient procedure to improve the performance of Li-S batteries. Nanomaterials 10 (5):840. doi:10.3390/nano10050840.
  • Bulgariu, L., D. I. Fertu, I. G. Cara, and M. Gavrilescu. 2021. Efficacy of alkaline-treated soy waste biomass for the removal of heavy-metal ions and opportunities for their recovery. Materials 14 (23):7413. doi:10.3390/ma14237413.
  • Dong, X., L. Q. Ma, Y. Zhu, Y. Li, and B. Gu. 2013. Mechanistic investigation of mercury sorption by Brazilian pepper biochars of different pyrolytic temperatures based on X-ray photoelectron spectroscopy and flow calorimetry. Environmental Science & Technology 47 (21):12156–64. doi:10.1021/es4017816.
  • Elanthamilan, E., S. Rajkumar, J. P. Merlin, D. S. Jona, K. Monisha, and B. C. Meena. 2020. Effect of decorating cobalt ferrite spinel structures on pistachio vera shell-derived activated carbon on energy storage applications. Electrochimica Acta 359:136953. doi:10.1016/j.electacta.2020.136953.
  • Faramarzi, A. H., T. Kaghazchi, H. A. Ebrahim, and A. A. Ebrahimi. 2015. Experimental investigation and mathematical modeling of physical activated carbon preparation from pistachio shell. Journal of Analytical and Applied Pyrolysis 114:143–54. doi:10.1016/j.jaap.2015.05.012.
  • Ghomi, A. G., N. Asasian-Kolur, S. Sharifian, and A. Golnaraghi. 2020. Biosorpion for sustainable recovery of precious metals from wastewater. Journal of Environmental Chemical Engineering 8 (4):103996. doi:10.1016/j.jece.2020.103996.
  • Gok, O., O. C. Mesutoglu. 2016. Application of pistachio shell (PSS) as low-cost adsorbent for the removal of Pb(II) from aqueous solution. Accessed by 04.02.2022. https://www.researchgate.net/publication/309618384.
  • Igwegbe, C. A., J. O. Ighalo, S. Ghosh, S. Ahmadi, and V. I. Ugonabo. 2021. Pistachio (Pistacia vera) waste as adsorbent for wastewater treatment: A review. Biomass Conversion and Biorefinery. doi:10.1007/s13399-021-01739-9.
  • Kadirvelu, K., M. Kavipriya, C. Karthika, N. Vennilamani, and S. Pattabhi. 2004. Mercury (II) adsorption by activated carbon made from sago waste. Carbon 42 (4):745–52. doi:10.1016/j.carbon.2003.12.089.
  • Kamandari, H., H. H. Rafsanjani, H. Najjarzadeh, and Z. Eksiri. 2015. Influence of process variables on chemically activated carbon from pistachio shell with ZnCl2 and KOH. Research on Chemical Intermediates 41 (1):71–81. doi:10.1007/s11164-013-1169-1.
  • Komnitsas, K., D. Zaharaki, I. Pyliotis, D. Vamvuka, and G. Bartzas. 2015. Assessment of pistachio shell biochar quality and its potential for adsorption of heavy metals. Waste and Biomass Valorization 6 (5):805–16. doi:10.1007/s12649-015-9364-5.
  • Kumar, S., R. S. Brar, J. N. Babu, A. Dahiya, S. Saha, and A. Kumar. 2021. Synergistic effect of pistachio shell powder and nano-zerovalent copper for chromium remediation from aqueous solution. Environmental Science and Pollution Research 28 (44):63422–36. doi:10.1007/s11356-021-15285-4.
  • Marett, J., A. Aning, and E. J. Foster. 2017. The isolation of cellulose nanocrystals from pistachio shells via acid hydrolysis. Industrial Crops & Products 109:869–74. doi:10.1016/j.indcrop.2017.09.039.
  • Montes-Moran, M. A., J. A. Menéndez, E. Fuente, and D. Suarez. 1998. Contribution of the basal planes to carbon basicity: An ab initio study of the H3O+− π interaction in cluster models. The Journal of Physical Chemistry B 102 (29):5595–601. doi:10.1021/jp972656t.
  • Moradi, P., S. Hayati, and T. Ghahrizadeh. 2020. Modeling and optimization of lead and cobalt biosorption from water with Rafsanjan pistachio shell, using experiment based models of ANN and GP, and the grey wolf optimizer. Chemometrics and Intelligent Laboratory Systems 202:104041. doi:10.1016/j.chemolab.2020.104041.
  • Morcali, M. H., B. Zeytuncu, S. Aktas, O. Yucel, and A. N. Gulluoglu. 2013b. Platinum adsorption from chloride media using carbonized biomass and commercial sorbent. Minerals & Metallurgical Processing 30:129–36. doi:10.1007/BF03402416.
  • Morcali, M. H., B. Zeytuncu, and O. Yucel. 2013a. Platinum uptake from chloride solutions using biosorbents. Materials Research 16 (2):528–38. doi:10.1590/S1516-14392013005000006.
  • Moussavi, G., and B. Barikbin. 2010. Biosorption of chromium(vi) from industrial wastewater onto pistachio hull waste biomass. Chemical Engineering Journal 162 (3):893–900. doi:10.1016/j.cej.2010.06.032.
  • Nejadshafiee, V., and M. R. Islami. 2020. Intelligent-activated carbon prepared from pistachio shells precursor for effective adsorption of heavy metals from industrial waste of copper mine. Environmental Science and Pollution Research 27 (2):1625–39. doi:10.1007/s11356-019-06732-4.
  • Nejadshafiee, V., and M. R. Islamia. 2019. Adsorption capacity of heavy metal ions using sultone-modified magnetic activated carbon as a bio-adsorbent. Materials Science & Engineering C 101:42–52. doi:10.1016/j.msec.2019.03.081.
  • Niksiar, A., and B. Nasernejad. 2017. Activated carbon preparation from pistachio shell pyrolysis and gasification in a spouted bed reactor. Biomass & Bioenergy 106:43–50. doi:10.1016/j.biombioe.2017.08.017.
  • Ozbek, H. N., D. K. Yanik, S. Fadiloglu, and F. Gogus. 2020. Ultrasound-assisted alkaline pre-treatment and its sequential combination with microwave for fractionation of pistachio shell. Renewable Energy 157:637–46. doi:10.1016/j.renene.2020.05.085.
  • Pedrama, H., M. R. Hosseini, and A. Bahrami. 2020. Utilization of A. Niger strains isolated from pistachio husk and grape skin in the bioleaching of valuable elements from red mud. Hydrometallurgy 198:105495. doi:10.1016/j.hydromet.2020.105495.
  • Peters, B. 2011. Prediction of pyrolysis of pistachio shells based on its components hemicellulose, cellulose and lignin. Fuel Processing Technology 92 (10):1993–98. doi:10.1016/j.fuproc.2011.05.023.
  • Rodriguez-Vila, A., H. Selwyn-Smith, L. Enunwa, I. Smail, E. F. Covelo, and T. Sizmur. 2018. Predicting Cu and Zn sorption capacity of biochar from feedstock C/N ratio and pyrolysis temperature. Environmental Science and Pollution Research 25 (8):7730–39. doi:10.1007/s11356-017-1047-2.
  • Sahin, O., S. Demirel, and M. F. Dilekoglu. 2005. Removal of Pb(II) from aqueous solution by antep pistachio shells. Fresenius Environmental Bullettin 14:986–92.
  • Sahin, O., Y. Yardim, O. Baytar, and C. Saka. 2020. Enhanced electrochemical double-layer capacitive performance with CO2 plasma treatment on activated carbon prepared from pyrolysis of pistachio shells. International Journal of Hydrogen Energy 45:8843–52. doi:10.1016/j.ijhydene.2020.01.128.
  • Sajjadi, S., A. Mohammadzadeh, H. N. Tran, I. Anastopoulos, G. L. Dottoe, Z. R. Lopicic, S. Sivamani, A. Rahmani-Sani, A. Ivanets, and A. Hosseini-Bandegharaei. 2018. Efficient mercury removal from wastewater by pistachio wood wastes-derived activated carbon prepared by chemical activation using a novel activating agent. Journal of Environmental Management 223:1001–09. doi:10.1016/j.jenvman.2018.06.077.
  • Sanchez-Polo, M., and J. Rivera-Utrilla. 2002. Adsorbent-adsorbate interactions in the adsorption of Cd (II) and Hg (II) on ozonized activated carbons. Environmental Science & Technology 36 (17):3850–54. doi:10.1021/es0255610.
  • Shirbhate, V. A., D. P. Gulwade, S. E. Bhandarkar, and S. V. Narsing. 2020. Preparation and spectroscopic characterization of pistachio nut shell’s activated carbon using ZnCl2 for removal of transition metal ions. Materials Today: Proceedings 29:1259–64. doi:10.1016/j.matpr.2020.06.233.
  • Soleimani, M., and T. Kaghazchi. 2008. Adsorption of gold ions from industrial wastewater using activated carbon derived from hard shell of apricot stones-an agricultural waste. Bioresource Technology 99 (13):5374–83. doi:10.1016/j.biortech.2007.11.021.
  • Tekin, I., I. Dirikolu, and H. S. Gokce. 2021. A regional supplementary cementitious material for the cement industry: pistachio shell ash. Journal of Cleaner Production 285:124810. doi:10.1016/j.jclepro.2020.124810.
  • Turan, N. G., and B. Mesci. 2011. Use of pistachio shells as an adsorbent for the removal of Zinc(II) Ion. Clean-Soil, Air, Water 39 (5):475–81. doi:10.1002/clen.201000297.
  • Xu, X., B. Gao, B. Jin, and Q. Yue. 2016. Removal of anionic pollutants from liquids by biomass materials: A review. Journal of Molecular Liquids 215:565–95. doi:10.1016/j.molliq.2015.12.101.
  • Younes, A., J. S. Ali, M. T. Nur, A. Duda, J. Wang, J. Samson, A. Kawamura, L. Francesconi, S. Alexandratos, and C. M. Drain. 2020. Pistachio shells as remediating agents for uranium in contaminated industrial seawater. Journal of Environmental Radioactivity 217:106209. doi:10.1016/j.jenvrad.2020.106209.
  • Zhu, J., B. Deng, J. Yang, and D. Gang. 2009. Modifying activated carbon with hybrid ligands for enhancing aqueous mercury removal. Carbon 47 (8):2014–25. doi:10.1016/j.carbon.2009.03.047.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.