181
Views
2
CrossRef citations to date
0
Altmetric
Research Article

A cascade energy cycle based on solid oxide fuel cell with electric energy storage option

, , , , &

References

  • Aghaie, M., M. Mehrpooya, and F. Pourfayaz. 2016.Introducing an integrated chemical looping hydrogen production, inherent carbon capture and solid oxide fuel cell biomass fueled power plant process configuration. Energy Conversion and Management 124: 141–54.doi: 10.1016/j.enconman.2016.07.001
  • Alayi, R., et al. 2020. Energy, environment and economic analyses of a parabolic trough concentrating photovoltaic/thermal system. International Journal of Low-Carbon Technologies 16(2):570–76. doi:10.1093/ijlct/ctaa086.
  • Alayi, R., and J. Velayti. 2021. Modeling/optimization and effect of environmental variables on energy production based on PV/Wind turbine hybrid system. Jurnal Ilmiah Teknik Elektro Komputer Dan Informatika (JITEKI) 7 (1):101–07. doi:10.26555/jiteki.v7i1.20515.
  • Alwan, N. T., et al. 2022. Assessment of the performance of solar water heater: An experimental and theoretical investigation. International Journal of Low-Carbon Technologies 17:528–39. doi:10.1093/ijlct/ctac032.
  • Baldinelli, A., et al. 2021. An extensive model for renewable energy electrochemical storage with solid oxide cells based on a comprehensive analysis of impedance deconvolution. Journal of Energy Storage 33:102052. doi:10.1016/j.est.2020.102052.
  • Behzad, R., M. Mehrpooya, and M. Marefati. 2021.Parametric design and performance evaluation of a novel solar assisted thermionic generator and thermoelectric device hybrid system. Renewable Energy 164: 194–210.doi: 10.1016/j.renene.2020.09.068
  • Beigzadeh, M., et al. 2021. Energy and exergy analyses of solid oxide fuel cell-gas turbine hybrid systems fed by different renewable biofuels: A comparative study. Journal of Cleaner Production 280:124383. doi:10.1016/j.jclepro.2020.124383.
  • Ben Slama, S. 2021. Prosumer in smart grids based on intelligent edge computing: A review on Artificial Intelligence Scheduling Techniques. Ain Shams Engineering Journal 13(1):101504.
  • Cao, Y., et al. 2021. Waste heat recovery of a combined solid oxide fuel cell - gas turbine system for multi-generation purposes. Applied Thermal Engineering 198:117463. doi:10.1016/j.applthermaleng.2021.117463.
  • Chang, X., B. Kong, and F. Gholizadeh. 2022. Assessment and comparison of the operation of an unmanned aerial vehicle’s propulsion system based on the different fuel cells. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 44 (2):3294–312. doi:10.1080/15567036.2022.2061645.
  • Chen, H., et al. 2020. Thermo-Dynamic and economic analysis of sa novel near-isothermal pumped hydro compressed air energy storage system. Journal of Energy Storage 30:101487. doi:10.1016/j.est.2020.101487.
  • Cheng, S., et al. 2021. A new hybrid solarphotovoltaic/phosphoric acid fuel cell and energy storage system; Energy andExergy performance. International Journal of Hydrogen Energy 46(11):8048–66. doi:10.1016/j.ijhydene.2020.11.282.
  • Da Rosa, A. V., and J. C. Ordonez. 2021. Fundamentals of renewable energy processes. Cambridge, Massachusetts:Academic Press.
  • Das, B. K., M. S. H. K. Tushar, and R. Hassan. 2021.Techno-Economic optimisation of stand-alone hybrid renewable energy systems for concurrently meeting electric and heating demand. Sustainable Cities and Society 68: 102763.doi: 10.1016/j.scs.2021.102763
  • Dincer, I., and M. A. Rosen. 2012. Exergy: Energy, environment and sustainable development. Elsevier:Newnes.
  • Dong, H., et al. 2021. Energy generation and storing electrical energy in an energy hybrid system consisting of solar thermal collector, Stirling engine and thermoelectric generator. Sustainable Cities and Society 75:103357. doi:10.1016/j.scs.2021.103357.
  • Guo, Y., and A. Yousefi. 2021.Determining the appropriate size of the electrical energy storage system of an energy process based on a solid oxide fuel cell and wind turbine. Journal of Energy Storage 44: 103430.doi: 10.1016/j.est.2021.103430
  • Hemmatabady, H., M. Mehrpooya, and S. A. Mousavi. 2022. Development of a novel hybrid SOFC/GT system and transcritical CO2 cycle for CCHP purpose in the district scale. Journal of Thermal Analysis and Calorimetry 147 (1):489–507. doi:10.1007/s10973-020-10306-9.
  • Hosseini, S. E. 2022. The US hydrogen fuel industry today and future. Future Energy 1 (1). doi:10.55670/fpll.fuen.1.1.7.
  • Jani, A., H. Karimi, and S. Jadid. 2021.Hybrid energy management for islanded networked microgrids considering battery energy storage and wasted energy. Journal of Energy Storage 40: 102700.doi: 10.1016/j.est.2021.102700
  • Jin, X., et al. 2021. Performance analysis of a 550mwe solid oxide fuel cell and air turbine hybrid system powered by coal-derived syngas. Energy 222:119917. doi:10.1016/j.energy.2021.119917.
  • Kim, H. S., et al. 2014. Design of segmented thermoelectric generator based on cost-effective and light-weight thermoelectric alloys. Materials Science and Engineering: B 185:45–52. doi:10.1016/j.mseb.2014.02.005.
  • Krüger, M. 2019.Process development for integrated coal gasification solid oxide fuel cells hybrid power plants – Investigations on solid oxide fuel cells/gas turbine hybrid power plants run on clean coal gas. Applied Energy 250: 19–31.doi: 10.1016/j.apenergy.2019.04.193
  • Letcher, T. M. 2020. Future energy: Improved, sustainable and clean options for our planet. Amsterdam, Netherlands:Elsevier.
  • Li, D., et al. 2021. Numerical assessment of a hybrid energy generation process and energy storage system based on alkaline fuel cell, solar energy and Stirling engine. Journal of Energy Storage 39:102631. doi:10.1016/j.est.2021.102631.
  • Lin, G., X. Wang, and A. Rezazadeh. 2021.Electrical energy storage from a combined energy process based on solid oxide fuel cell and use of waste heat. Sustainable Energy Technologies and Assessments 48: 101663.doi: 10.1016/j.seta.2021.101663
  • Ma, L., J. Mao, and M. Marefati. 2022.Assessment of a new coal-fired power plant integrated with solid oxide fuel cell and parabolic trough solar collector. Process Safety and Environmental Protection 163: 340–52.doi: 10.1016/j.psep.2022.05.053
  • Marefati, M., and M. Mehrpooya. 2019.Introducing and investigation of a combined molten carbonate fuel cell, thermoelectric generator, linear fresnel solar reflector and power turbine combined heating and power process. Journal of Cleaner Production 240: 118247.doi: 10.1016/j.jclepro.2019.118247
  • Marefati, M., M. Mehrpooya, and S. A. Mousavi. 2019. Introducing an integrated SOFC, linear Fresnel solar field, Stirling engine and steam turbine combined cooling, heating and power process. International Journal of Hydrogen Energy 44 (57):30256–79. doi:10.1016/j.ijhydene.2019.09.074.
  • Marefati, M., M. Mehrpooya, and F. Pourfayaz. 2021.Performance analysis of an integrated pumped-hydro and compressed-air energy storage system and solar organic Rankine cycle. Journal of Energy Storage 44: 103488.doi: 10.1016/j.est.2021.103488
  • Marefati, M., M. Mehrpooya, and M. B. Shafii. 2019.A hybrid molten carbonate fuel cell and parabolic trough solar collector, combined heating and power plant with carbon dioxide capturing process. Energy Conversion and Management 183: 193–209.doi: 10.1016/j.enconman.2019.01.002
  • Mehrpooya, M., et al. 2014. Modeling and optimum design of hybrid solid oxide fuel cell-gas turbine power plants. International Journal of Hydrogen Energy 39(36):21196–214. doi:10.1016/j.ijhydene.2014.10.077.
  • Mehrpooya, M., et al. 2020. Fabrication of nano-platinum alloy electrocatalysts and their performance in a micro-direct methanol fuel cell. The European Physical Journal Plus 135(7):589. doi:10.1140/epjp/s13360-020-00603-5.
  • Mehrpooya, M., H. Ansarinasab, and S. A. Mousavi. 2021.Life cycle assessment and exergoeconomic analysis of the multi-generation system based on fuel cell for methanol, power, and heat production. Renewable Energy 172: 1314–32.doi: 10.1016/j.renene.2021.03.111
  • Mehrpooya, M., H. Dehghani, and S. A. Moosavian. 2016.Optimal design of solid oxide fuel cell, ammonia-water single effect absorption cycle and Rankine steam cycle hybrid system. Journal of Power Sources 306: 107–23.doi: 10.1016/j.jpowsour.2015.11.103
  • Meng, Q., et al. 2017. Thermodynamic analysis of combined power generation system based on SOFC/GT and transcritical carbon dioxide cycle. International Journal of Hydrogen Energy 42(7):4673–78. doi:10.1016/j.ijhydene.2016.09.067.
  • Miranda, P. E. 2018. Science and engineering of hydrogen-based energy technologies: Hydrogen production and practical applications in energy generation. Cambridge, Massachusetts:Academic Press.
  • Mozayeni, H., et al. 2020. Study of effect of heat transfer in an air storage vessel on performance of a pumped hydro compressed air energy storage system. International Journal of Heat and Mass Transfer 148:119119. doi:10.1016/j.ijheatmasstransfer.2019.119119.
  • Mozayeni, H., X. Wang, and M. Negnevitsky. 2019.Thermodynamic and exergy analysis of a combined pumped hydro and compressed air energy storage system. Sustainable Cities and Society 48: 101527.doi: 10.1016/j.scs.2019.101527
  • Peng, M.-Y.-P., et al. 2020. Energy and exergy analysis of a new combined concentrating solar collector, solid oxide fuel cell, and steam turbine CCHP system. Sustainable Energy Technologies and Assessments 39:100713. doi:10.1016/j.seta.2020.100713.
  • Pirkandi, J., H. Penhani, and A. Maroufi. 2020. Thermodynamic analysis of the performance of a hybrid system consisting of steam turbine, gas turbine and solid oxide fuel cell (SOFC-GT-ST). Energy Conversion and Management 213:112816.
  • Ramadhani, F., et al. 2020. Optimal heat recovery using photovoltaic thermal and thermoelectric generator for solid oxide fuel cell-based polygeneration system: Techno-economic and environmental assessments. Applied Thermal Engineering 181:116015. doi:10.1016/j.applthermaleng.2020.116015.
  • Rostami, M., et al. 2022. Introducing and evaluation of a new propulsion system composed of solid oxide fuel cell and downstream cycles; usage in unmanned aerial vehicles. International Journal of Hydrogen Energy 47(28):13693–709. doi:10.1016/j.ijhydene.2022.02.104.
  • Roushenas, R., E. Zarei, and M. Torabi. 2021.A novel trigeneration system based on solid oxide fuel cell-gas turbine integrated with compressed air and thermal energy storage concepts: Energy, exergy, and life cycle approaches. Sustainable Cities and Society 66: 102667.doi: 10.1016/j.scs.2020.102667
  • Rupiper, L. N., et al. 2022. Impact of fuel type on the performance of a solid oxide fuel cell integrated with a gas turbine. Sustainable Energy Technologies and Assessments 51:101959. doi:10.1016/j.seta.2022.101959.
  • Saberi Shahmarvandi, N., et al. 2022. Effects of different target solar fractions on providing heat required for space heating, sanitary hot water, and swimming pool in Iran: A case study in cold climate. Journal of Engineering 2022.
  • Shamel, A., et al. 2016. Designing a PID controller to control a fuel cell voltage using the imperialist competitive algorithm. Advances in Science and Technology Research Journal 10 (30). doi: 10.12913/22998624/62629.
  • Shen, Y., et al. 2021. Introducing and investigation of a pumped hydro-compressed air storage based on wind turbine and alkaline fuel cell and electrolyzer. Sustainable Energy Technologies and Assessments 47:101378. doi:10.1016/j.seta.2021.101378.
  • Singh, R., and O. Singh. 2018.Comparative study of combined solid oxide fuel cell-gas turbine-Organic Rankine cycle for different working fluid in bottoming cycle. Energy Conversion and Management 171: 659–70.doi: 10.1016/j.enconman.2018.06.009
  • Singla, M. K., P. Nijhawan, and A. S. Oberoi. 2021. Hydrogen fuel and fuel cell technology for cleaner future: A review. Environmental Science and Pollution Research International 28 (13):15607–26. doi:10.1007/s11356-020-12231-8.
  • Valencia, E. A., et al. Design point Analysis of an hybrid fuel cell gas turbine cycle for advanced distributed propulsion systems. in 51st AIAA/SAE/ASEE joint propulsion conference, Orlando, Florida, (p. 3802). 2015.
  • Wang, S., et al. 2022. Numerical assessment of a hybrid energy system based on solid oxide electrolyzer, solar energy and molten carbonate fuel cell for the generation of electrical energy and hydrogen fuel with electricity storage option. Journal of Energy Storage 54:105274. doi:10.1016/j.est.2022.105274.
  • Yu, X., et al. 2021. Numerical investigation of a new combined energy cycle based on miller cycle, organic Rankine cycle, stirling engine and alkaline fuel cell. Energy Reports 7:5406–19.
  • Zhang, H., et al. 2017. Application of cascading thermoelectric generator and cooler for waste heat recovery from solid oxide fuel cells. Energy Conversion and Management 148:1382–90. doi:10.1016/j.enconman.2017.06.089.
  • Zhang, T., et al. 2021. Thermodynamic performance study of a novel cogeneration system combining solid oxide fuel cell, gas turbine, organic Rankine cycle with compressed air energy storage. Energy Conversion and Management 249:114837. doi:10.1016/j.enconman.2021.114837.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.