125
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Kinetic and thermodynamic analysis of pyrolysis of oily cold rolling mill sludge of steel industry under non-isothermal conditions

, , , , , & show all
Pages 8777-8786 | Received 02 Jun 2022, Accepted 07 Sep 2022, Published online: 20 Sep 2022

References

  • Ahmad, M. S., C.-G. Liu, M. Nawaz, A. Tawab, X. Shen, B. Shen, and M. A. Mehmood. 2021. Elucidating the pyrolysis reaction mechanism of Calotropis procera and analysis of pyrolysis products to evaluate its potential for bioenergy and chemicals. Bioresource Technology 322:124545. doi:10.1016/j.biortech.2020.124545.
  • Asghar, A., R. Haider, C.-G. Liu, M. Afzal, and M. A. Mehmood. 2021. Evaluating bioenergy potential of the Para grass (Brachiaria mutica) biomass produced on a land-free cultivation system while keeping the water-energy-environment nexus sustainable. Energy Conversion and Management 245:114590. doi:http://dx.doi.org/10.1016/j.enconman.2021.114590.
  • Chen, J., L. Mu, B. Jiang, H. Yin, X. Song, and A. Li. 2015. TG/DSC-FTIR and Py-GC investigation on pyrolysis characteristics of petrochemical wastewater sludge. Bioresource Technology 192:1–10. doi:http://dx.doi.org/10.1016/j.biortech.2015.05.031.
  • Cheng, F., A. A. Small, and L. M. Colosi. 2021. The levelized cost of negative CO2 emissions from thermochemical conversion of biomass coupled with carbon capture and storage. Energy Conversion and Management 237:114115. doi:10.1016/j.enconman.2021.114115.
  • Choudhury, N. D., N. Bhuyan, N. Bordoloi, N. Saikia, and R. Kataki. 2021. Production of bio-oil from coir pith via pyrolysis: Kinetics, thermodynamics, and optimization using response surface methodology. Biomass Conversion and Biorefinery 11 (6):2881–98. doi:https://doi.org/10.1007/s13399-020-00630-3.
  • Cruz, B. D., J. Samuel, and L. George. 2014. Characterization, non-isothermal decomposition kinetics and photocatalytic water splitting of green chemically synthesized polyoxoanions of molybdenum containing phosphorus as hetero atom. Thermochimica Acta 596:29–36. doi:http://dx.doi.org/10.1016/j.tca.2014.09.010.
  • Georgiopoulou, M., and G. Lyberatos. 2018. Life cycle assessment of the use of alternative fuels in cement kilns: A case study. Journal of Environmental Management 216:224–34. doi:10.1016/j.jenvman.2017.07.017.
  • Gong, Z., Z. Wang, A. Du, P. Fang, Z. Sun, and X. Li. 2018. Study on pyrolysis of oil sludge with microalgae residue additive. The Canadian Journal of Chemical Engineering 9999:1–7. doi:10.1002/cjce.23143.
  • Hu, G., H. Feng, P. He, J. Li, K. Hewage, and R. Sadiq. 2019. Comparative life-cycle assessment of traditional and emerging oily sludge treatment approaches. Journal of Cleaner Production 251:119594. doi:10.1016/j.jclepro.2019.119594.
  • Hui, K., J. Tang, H. Lu, B. Xi, C. Qu, and J. Li. 2020. Status and prospect of oil recovery from oily sludge: A review. Arabian Journal of Chemistry 13 (8):6523–43. doi:https://doi.org/10.1016/j.arabjc.2020.06.009.
  • Kaur, R., P. Gera, M. K. Jha, and T. Bhaskar. 2018. Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis. Bioresource Technology Biomass Bioenergy Biowastes Conversion Technologies Biotransformations Production Technologies 250:422–28. doi:10.1016/j.biortech.2017.11.077.
  • Liang, Q., D. Han, Z. Cao, and J. Du. 2021. Studies on kinetic and reaction mechanism of oil rolling sludge under a wide temperature range. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–13. doi:10.1080/15567036.2020.1871448.
  • Liu, B., S.-G. Zhang, J.-J. Tian, D.-A. Pan, Y. Liu, and A. A. Volinsky. 2013. Recycle of valuable products from oily cold rolling mill sludge. International Journal of Minerals, Metallurgy and Materials 20 (10):941–46. doi:https://doi.org/10.1007/s12613-013-0818-0.
  • Lopes, F., and K. Tannous. 2020. Coconut fiber pyrolysis decomposition kinetics applying single- and multi-step reaction models. Thermochimica Acta 691:178714. doi:10.1016/j.tca.2020.178714.
  • Loy, A., D. K. W. Gan, S. Yusup, B. L. F. Chin, M. K. Lam, M. Shahbaz, P. Unrean, M. N. Acda, and E. Rianawati. 2018. Thermogravimetric kinetic modelling of in-situ catalytic pyrolytic conversion of rice husk to bioenergy using rice hull ash catalyst. Bioresource Technology 261:213–22. doi:10.1016/j.biortech.2018.04.020.
  • Mallick, D., M. K. Poddar, P. Mahanta, V. S. Moholkar. 2018. Discernment of synergism in pyrolysis of biomass blends using thermogravimetric analysis. Bioresource Technology 261:294–305. doi:10.1016/j.biortech.2018.04.011.
  • Miao, W., X. Li, Y. Wang, and Y. Lv. 2019. Pyrolysis characteristics of oil-field sludge and the comparison of kinetic analysis with two representative methods. Journal of Petroleum Science and Engineering 182:106309. doi:10.1016/j.petrol.2019.106309.
  • Özsin, G., E. Apaydın-Varol, M. Kılıç, A. E. Pütün, and E. Pütün. 2021. Pyrolysis of petroleum sludge under non-isothermal conditions: Thermal decomposition behavior, kinetics, thermodynamics, and evolved gas analysis. Fuel 300:120980. doi:https://doi.org/10.1016/j.fuel.2021.120980.
  • Pauline, A. L., and K. Joseph. 2021. Hydrothermal carbonization of oily sludge for solid fuel recovery-investigation of chemical characteristics and combustion behaviour. Journal of Analytical and Applied Pyrolysis 157:105235. doi:10.1016/j.jaap.2021.105235.
  • Qin, L., J. Han, X. He, Y. Zhan, and F. Yu. 2015. Recovery of energy and iron from oily sludge pyrolysis in a fluidized bed reactor. Journal of Environmental Management 154:177–82. doi:http://dx.doi.org/10.1016/j.jenvman.2015.02.030.
  • Qu, Y., A. Li, D. Wang, L. Zhang, and G. Ji. 2019. Kinetic study of the effect of in-situ mineral solids on pyrolysis process of oil sludge. Chemical Engineering Journal 374:338–46. doi:10.1016/j.cej.2019.05.183.
  • Rasam, S., A. M. Haghighi, K. Azizi, A. Soria-Verdugo, and M. K. Moravejia. 2020. Thermal behavior, thermodynamics and kinetics of co-pyrolysis of binary and ternary mixtures of biomass through thermogravimetric analysis. Fuel 280:118665. doi:10.1016/j.fuel.2020.118665.
  • Shatokha, V.I., O. O. Gogenko, and S. M. Kripak. 2011. Utilising of the oiled rolling mills scale in iron ore sintering process. Resources, Conservation and Recycling 55 (4):435–40. doi:https://doi.org/10.1016/j.resconrec.2010.11.006.
  • Singh, S., J. Prasad Chakraborty, and M. Kumar Mondal. 2020. Intrinsic kinetics, thermodynamic parameters and reaction mechanism of non-isothermal degradation of torrefied Acacia nilotica using isoconversional methods. Fuel 259:116263. doi:http://dx.doi.org/10.1016/j.fuel.2019.116263.
  • Singh, B., S. Singh, and P. Kumar. 2021. In-Depth analyses of kinetics, thermodynamics and solid reaction mechanism for pyrolysis of hazardous petroleum sludge based on iso-conversional models for its energy potential. Process Safety and Environmental Protection 146:85–94. doi:10.1016/j.psep.2020.08.038.
  • Tang, S., C. Zheng, F. Yan, N. Shao, Y. Tang, and Z. Zhang. 2018. Product characteristics and kinetics of sewage sludge pyrolysis driven by alkaline earth metals. Energy 153:921–32. doi:10.1016/j.energy.2018.04.108.
  • Turmanova, S. C., S. D. Genieva, A. S. Dimitrova, and L. T. Vlaev. 2008. Non-isothermal degradation kinetics of filled with rise husk ash polypropene composites. Express Polymer Letters 2 (2):133–46. doi:http://dx.doi.org/10.3144/expresspolymlett.2008.18.
  • Wan, G., L. Bei, J. Yu, L. Xu, and L. Sun. 2022. Products distribution and hazardous elements migration during pyrolysis of oily sludge from the oil refining process. Chemosphere 288:132524. doi:10.1016/j.chemosphere.2021.132524.
  • Xinsong, Y., T. He, H. Cao, and Q. Yuan. 2017. Cattle manure pyrolysis process: Kinetic and thermodynamic analysis with iso-conversional methods. Renewable Energy 107:489–96. doi:10.1016/j.renene.2017.02.026.
  • Xu, M., J. Zhang, H. Liu, H. Zhao, and W. Li. 2014. The resource utilization of oily sludge by co-gasification with coal. Fuel 126:55–61. doi:http://dx.doi.org/10.1016/j.fuel.2014.02.048.
  • Yasmin, T., A. Asghar, M. S. Ahmad, M. A. Mehmood, and M. Nawaz. 2021. Biorefinery potential of Typha domingensis biomass to produce bioenergy and biochemicals assessed through pyrolysis, thermogravimetry, and TG-FTIR-GCMS-based study. Biomass Conversion and Biorefinery. doi:10.1007/s13399-021-01892-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.