85
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental study on deflagration dynamics of premixed flame in inclined crossover pipes

, , ORCID Icon, , , , & ORCID Icon show all
Pages 8811-8825 | Received 05 Apr 2022, Accepted 10 Sep 2022, Published online: 20 Sep 2022

References

  • Blanchard, R., et al. 2010. Explosions in closed pipes containing baffles and 90 degree bends. Journal of Loss Prevention in the Process Industries. 23(2):253–59. doi:10.1016/j.jlp.2009.09.004.
  • Bogdan, et al. 2014. Tulip flame - the mechanism of flame front inversion. Combustion and Flame. 161(12):3051–62. doi:10.1016/j.combustflame.2014.06.001.
  • Bychkov, V., et al. 2005. Theory and modeling of accelerating flames in tubes. Physical Review E Statistical Nonlinear & Soft Matter Physics. 72(4):046307. doi:10.1103/PhysRevE.72.046307.
  • Bychkov, V., et al. 2007. Flame acceleration in the early stages of burning in tubes. Combustion and Flame. 150(4):263–76. doi:10.1016/j.combustflame.2007.01.004.
  • Dunn-Rankin, D., and R. F. Sawyer. 1998. Tulip flames: Changes in shape of premixed flames propagating in closed tubes. Experiments in Fluids 24 (2):130–40. doi:10.1007/s003480050160.
  • Ellis, O. 1928. Flame movement in gaseous explosive mixtures. Journal of Fuel Science 7: 502-508.
  • Eriksson, P. 2007. Flame acceleration in the early stages of burning in tubes. Combustion and Flame 150(4): 263-276.
  • Hx, A., B. Js, and C. Xh. 2018.A study on the dynamic behavior of premixed propane-air flames propagating in a curved combustion chamber. Fuel 228: 342–48.doi: 10.1016/j.fuel.2018.04.165
  • Li, G., et al. 2016. Explosions of gasoline-air mixtures in a closed pipe containing a T-shaped branch structure. Journal of Loss Prevention in the Process Industries 43:529–36. doi:10.1016/j.jlp.2016.07.022.
  • Lm, A., A. Mb, B. Vt, et al. 2022. Comparison of ignition and early flame propagation in methane/air mixtures using nanosecond repetitively pulsed discharge and inductive ignition in a pre-chamber setup under engine relevant conditions[j]. Combustion and Flame 237:111851. doi:10.1016/j.combustflame.2021.111851.
  • Mitu, M., V. Giurcan, D. Razus, et al. 2020. Influence of initial pressure and vessel’s geometry on deflagration of stoichiometric methane–air mixture in small-scale closed vessels[J]. Energy and Fuels. 34(3):3828–35. doi:10.1021/acs.energyfuels.9b04450.
  • Mitu, M., D. Razus, and V. Schroeder. 2021. Laminar burning velocities of hydrogen-blended methane–air and natural gas–air mixtures, calculated from the early stage of p(t) records in a spherical vessel. Energies 14 (22):7556. doi:10.3390/en14227556.
  • Niu, Y., B. Shi, and B. Jiang. 2019.Experimental study of overpressure evolution laws and flame propagation characteristics after methane explosion in transversal pipe networks. Applied Thermal Engineering 154: 18–23.doi: 10.1016/j.applthermaleng.2019.03.059
  • Philippemetzener. 1997. The propagation of premixed flames in closed tubes 336: 331-350.
  • Phylaktou, et al. 2015. The effect of vent size and congestion in large-scale vented natural gas/air explosions. Journal of Loss Prevention in the Process Industries 35: 169-181.
  • Qi, S., et al. 2017. Effects of concentration, temperature, humidity, and nitrogen inert dilution on the gasoline vapor explosion. Journal of Hazardous Materials 323:593–601. doi:10.1016/j.jhazmat.2016.06.040.
  • S, S., et al. 2001. The effects of obstructions on overpressure resulting from premixed flame deflagration. Journal of Loss Prevention in the Process Industries. 14(3):213–21. doi:10.1016/S0950-4230(00)00024-3.
  • Salamandra, G. D., T. V. Bazhenova, and I. M. Naboko. 1958. Formation of detonation wave during combustion of gas in combustion tube[j]. Symposium (International) on Combustion 7 (1):851–55. doi:10.1016/S0082-0784(58)80128-9.
  • Sato, K., Y. Sakai, and M. Chiga. 1996. Flame propagation along 90° bend in an open duct. Symposium on Combustion 26 (1):931–37. doi:10.1016/S0082-0784(96)80304-3.
  • Searby, C. G. 1996. On the “tulip flame” phenomenon Vol.105(1-2), pp. 225-238 . Combustion and Flame.
  • Shen, X., C. Zhang, G. Xiu, et al. 2019. Evolution of premixed stoichiometric hydrogen/air flame in a closed duct[j]. Energy. 176(JUN.1):265–71. doi:10.1016/j.energy.2019.03.193.
  • Song, S. A., A. Yq, B. Hx, et al. Effects of concentration and initial turbulence on the vented explosion characteristics of methane-air mixtures - ScienceDirect[j]. Fuel 267 : 10.1016/j.fuel.2020.117154.
  • Starke, R., and P. Roth. 1986. An experimental investigation of flame behavior during cylindrical vessel explosions. Combustion & Flame 66 (3):249–59. doi:10.1016/0010-2180(86)90138-0.
  • Xiao, H., R. W. Houim, and E. S. Oran. 2015. Formation and evolution of distorted tulip flames. Combustion & Flame 162 (11):4084–101. doi:10.1016/j.combustflame.2015.08.020.
  • Xufeng, Y., et al. 2019. An experimental investigation into the behavior of premixed flames of hydrogen/carbon monoxide/air mixtures in a half-open duct[j]. Fuel 237: 619-629.
  • Yang, X., et al. 2019. A comparative investigation of premixed flame propagation behavior of syngas-air mixtures in closed and half-open ducts. Energy 178:436–46. doi:10.1016/j.energy.2019.04.135.
  • Yang, X., et al. 2020. An experimental study on premixed syngas/air flame propagating across an obstacle in closed duct. Fuel 267:117200. doi:10.1016/j.fuel.2020.117200.
  • Yang, X., et al. 2020. On the propagation dynamics of lean H2/CO/air premixed flame. International Journal of Hydrogen Energy. 45(11):7210–22. doi:10.1016/j.ijhydene.2019.12.116.
  • Y U, M.-G., J. Kong, Y. Wang, et al. 2014. Experiment study on explosion characteristic features of the methane-air pre-mixture at different concentrations[j]. Journal of Safety and Environment 14(6): 85-90.
  • Zhang, P., et al. 2013. Explosions of gasoline–air mixture in the tunnels containing branch configuration[j]. Journal of Loss Prevention in the Process Industries. 26(6):1279–84. doi:10.1016/j.jlp.2013.07.003.
  • Zheng, K., et al. 2016. Experimental study on premixed flame propagation of hydrogen/methane/air deflagration in closed ducts. International Journal of Hydrogen Energy. 42(8):5426–38. doi:10.1016/j.ijhydene.2016.10.106.
  • Zheng, L., Z. Dou, D. Du, et al. 2019. Study on explosion characteristics of premixed hydrogen/biogas/air mixture in a duct[j]. International Journal of Hydrogen Energy. 44(49):27159–73. doi:10.1016/j.ijhydene.2019.08.156.
  • Zhou, B., A. Sobiesiak, and Q. Peng. 2006. Flame behavior and flame-induced flow in a closed rectangular duct with a 90° bend. International Journal of Thermal Sciences 45 (5):457–74. doi:10.1016/j.ijthermalsci.2005.07.001.
  • Zhu, C. J., Z. S. Gao, B. Q. Lin, et al. 2016. Flame acceleration in pipes containing bends of different angles[j]. Journal of Loss Prevention in the Process Industries 43:273–79. doi:10.1016/j.jlp.2016.05.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.