147
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Comparison and characterization of torrefaction performance and pyrolysis behaviour of softwood and hardwood

&
Pages 8860-8877 | Received 13 May 2022, Accepted 08 Sep 2022, Published online: 21 Sep 2022

References

  • Abelha, P., C. M. Vilela, P. Nanou, M. Carbo, A. Janssen, and S. Leiser. 2019. Combustion improvements of upgraded biomass by washing and torrefaction. Fuel 253:1018–33. doi:10.1016/j.fuel.2019.05.050.
  • Akahira, T., and T. Sunose. 1971. Method of determining activation deterioration constant of electrical insulating materials. Research Report, Chiba Institute of Technology, Research Report, Chiba Institute of Technology Research Report, Chiba Institute of Technology 16:22–31. Chiba.
  • Arias, B., C. Pevida, J. Fermoso, M. G. Plaza, F. Rubiera, and J. J. Pis. 2008. Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Processing Technology 89 (2):169–75. doi:10.1016/j.fuproc.2007.09.002.
  • Bach, Q.-V., and Ø. Skreiberg. 2016. Upgrading biomass fuels via wet torrefaction: A review and comparison with dry torrefaction. Renewable and Sustainable Energy Reviews 54:665–77. doi:10.1016/j.rser.2015.10.014.
  • Barskov, S., M. Zappi, P. Buchireddy, S. Dufreche, J. Guillory, D. Gang, R. Hernandez, R. Bajpai, J. Baudier, R. Cooper, et al. 2019. Torrefaction of biomass: A review of production methods for biocoal from cultured and waste lignocellulosic feedstocks. Renewable Energy 142:624–42. doi:10.1016/j.renene.2019.04.068.
  • Barzegar, R., A. Yozgatligil, H. Olgun, and A. T. Atimtay. 2020. TGA and kinetic study of different torrefaction conditions of wood biomass under air and oxy-fuel combustion atmospheres. Journal of the Energy Institute 93 (3):889–98. doi:10.1016/j.joei.2019.08.001.
  • Basu, P., A. K. Sadhukhan, P. Gupta, S. Rao, A. Dhungana, and B. Acharya. 2014. An experimental and theoretical investigation on torrefaction of a large wet wood particle. Bioresource Technology 159:215–22. doi:10.1016/j.biortech.2014.02.105.
  • Borén, E., 2017. Off-gassing from thermally treated lignocellulosic biomass PhD dissertation, Umeå University, Umeå.
  • Brems, A., J. Baeyens, C. Vandecasteele, and R. Dewil. 2011. Polymeric cracking of waste polyethylene terephthalate to chemicals and energy. Journal of the Air & Waste Management Association 16 (7):721–31. doi:10.3155/1047-3289.61.7.721.
  • Cao, L., X. Yuan, and L. Jiang. 2016. Thermogravimetric characteristics and kinetics analysis of oil cake and torrefied biomass blends. Fuel 175:129–36. doi:10.1016/j.fuel.2016.01.089.
  • Ceylan, S., Y. Topcu, and Z. Ceylan. 2014. Thermal behaviour and kinetics of alga polysiphonia elongata biomass during pyrolysis. Bioresource Technology 171:193–98. doi:10.1016/j.biortech.2014.08.064.
  • Chen, W.-H., H.-C. Hsu, K.-M. Lu, W.-J. Lee, and T.-C. Lin. 2011. Thermal pretreatment of wood (Lauan) block by torrefaction and its influence on the properties of the biomass. Energy 36:3012–21. doi:10.1016/j.energy.2011.02.045.
  • Chen, W.-H., B.-J. Lin, B. Colin, J.-S. Chang, A. Pétrissans, X. Bi, and M. Pétrissans. 2018. Hygroscopic transformation of woody biomass torrefaction for carbon storage. Applied Energy 231:768–76. doi:10.1016/j.apenergy.2018.09.135.
  • Dhaundiyal, A., and L. Toth. 2022. Thermogravimetric analysis of the torrefied Austrian pine. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 44 (2):3641–59. doi:10.1080/15567036.2022.2069303.
  • Fernandez, A., C. Palacios, M. Echegaraya, G. Mazza, and R. Rodriguez. 2018. Pyrolysis and combustion of regional agro-industrial wastes: thermal behavior and kinetic parameters comparison. Combustion Science and Technology 190 (1):114–35. doi:10.1080/00102202.2017.1377701.
  • Flynn, J. H., and L. A. Wall. 1966. A quick, direct method for the determination of activation energy from thermogravimetric data. Journal of Polymer Science Part B Polymer Letter 4 (5):323–28. doi:10.1002/pol.1966.110040504.
  • Granados, D. A., F. Chejne, and P. Basu. 2016. A two dimensional model for torrefaction of large biomass particles. Journal of Analytical and Applied Pyrolysis 120:1–14. doi:10.1016/j.fuproc.2007.09.002.
  • Hameed, S., A. Sharma, V. Pareek, H. Wu, and Y. Yu. 2019. A review on biomass pyrolysis models: Kinetic, network and mechanistic models. Biomass & Bioenergy 123:104–22. doi:10.1016/j.biombioe.2019.02.008.
  • Hu, Q., H. Yang, H. Xu, Z. Wu, C. J. Lim, X. T. Bi, and H. Chen. 2018. Thermal behavior and reaction kinetics analysis of pyrolysis and subsequent in-situ gasification of torrefied biomass pellets. Energy Conversation Management 161:205–14. doi:10.1016/j.enconman.2018.02.003.
  • Huang, Y. F., P. T. Chiueh, W. H. Kuan, and S. L. Lo. 2013. Pyrolysis kinetics of biomass from product information. Applied Energy 110:1–8. doi:10.1016/j.apenergy.2013.04.034.
  • Jayaraman, K., M. V. Kök, and I. Gökalpa. 2020. Combustion mechanism and model free kinetics of different origin coal samples: Thermal analysis approach. Energy 204:117905. doi:10.1016/j.energy.2020.117905.
  • Kambo, H. S., and A. Dutta. 2015. Comparative evaluation of torrefaction and hydrothermal carbonization of lignocellulosic biomass for the production of solid biofuel. Energy Conversation Management 105:746–55. doi:10.1016/j.enconman.2015.08.031.
  • Kanwal, S., N. Chaudhry, S. Munir, and H. Sana. 2019. Effect of torrefaction conditions on the physicochemical characterization of agricultural waste (sugarcane bagasse). Waste Management 88:280–90. doi:10.1016/j.wasman.2019.03.053.
  • Kim, J. H., T. Y. Jeong, J. Yu, and C. H. Jeon. 2019. Influence of biomass pretreatment on co-combustion characteristics with coal and biomass blends. Journal of Mechanical Science and Technology 33 (5):2493–501. doi:10.1007/s12206-019-0446-3.
  • Kissinger, H. E. 1956. Variation of peak temperature with heating rate in differential thermal analysis. Journal of Research and National Bureau of Standards 57 (4):217–21. doi:10.6028/jres.057.026.
  • Laougé, Z. B., and H. Merdun. 2021. Investigation of thermal behavior of pine sawdust and coal during co-pyrolysis and co-combustion. Energy 231:120895. doi:10.1016/j.energy.2021.120895.
  • Lau, H. S., H. K. Ng, S. Gan, and S. A. Jourabchi. 2018. Torrefaction of oil palm fronds for co-firing in coal power plants. Energy Procedia 144:75–81. doi:10.1016/j.egypro.2018.06.010.
  • Li, T., Y. Niu, L. Wang, C. Shaddix, and T. Løvås. 2018. High temperature gasification of high heating-rate chars using a flat-flame reactor. Applied Energy 227:100–07. doi:10.1016/j.apenergy.2017.08.075.
  • Liu, L., Z. Chen, Z. Yu, X. Zhang, C. Li, and R. Sui. 2022. Experimental study of torrefaction of camellia seed shell for solid fuel production in the context of a carbon neutrality roadmap. BioResources 17 (3):4055–68. doi:10.15376/biores.17.3.4055-4068.
  • Lu, X., R. Xu, K. Sun, J. Jiang, Y. Sun, and Y. Zhang. 2022. Study on the effect of torrefaction on pyrolysis kinetics and thermal behavior of cornstalk based on a combined approach of chemical and structural analyses. ACS Omega 7 (16):13789–800. doi:10.1021/acsomega.2c00047.
  • Luo, L., X. Guo, Z. Zhang, M. Chai, M. M. Rahman, X. Zhang, and J. Cai. 2020. Insight into pyrolysis kinetics of lignocellulosic biomass: Isoconversional kinetic analysis by the modified friedman method. Energy & Fuels 34:4874–81. doi:10.1021/acs.energyfuels.0c00275.
  • Martín-Lara, M. A., A. Ronda, M. C. Zamora, and M. Calero. 2017. Torrefaction of olive tree pruning: Effect of operating conditions on solid product properties. Fuel 202:109–17. doi:10.1016/j.fuel.2017.04.007.
  • Medic, D., M. Darr, A. Shah, B. Potter, and J. Zimmerman. 2012. Effects of torrefaction process parameters on biomass feedstock upgrading. Fuel 91:147–54. doi:10.1016/j.fuel.2011.07.019.
  • Müller-Hagedorn, M., H. Bockhorn, L. Krebs, and U. Müller. 2003. A comparative kinetic study on the pyrolysis of three different wood species. Journal of Analytical and Applied Pyrolysis 68-69:231–49. doi:10.1016/S0165-2370(03)00065-2.
  • Ozawa, T. 1965. A new method of analyzing thermogravimetric data. Bulletin of the Chemical Society of Japan 38:1881–86. doi:10.1246/bcsj.38.1881.
  • Peng, J. H., X. T. Bi, S. Sokhansanj, and C. J. Lim. 2013. Torrefaction and densification of different species of softwood residues. Fuel 111:411–21. doi:10.1016/j.fuel.2013.04.048.
  • Quan, C., N. Gao, and Q. Song. 2016. Pyrolysis of biomass components in a TGA and a fixed-bed reactor: Thermochemical behaviors, kinetics, and product characterization. Journal of Analytical and Applied Pyrolysis 121:84–92. doi:10.1016/j.jaap.2016.07.005.
  • Raheem, A., W. A. K. G. Wan Azlina, Y. H. Taufiq Yap, M. K. Danquah, and R. Harun. 2015. Thermochemical conversion of microalgal biomass for biofuel production. Renewable and Sustainable Energy Reviews 49:990–99. doi:10.1016/j.rser.2015.04.186.
  • Ramos-Carmona, S., J. D. Martínez, and J. F. Pérez. 2018. Torrefaction of patula pine under air conditions: A chemical and structural characterization. Industrial Crops and Products 118:302–10. doi:10.1016/j.indcrop.2018.03.062.
  • Ren, S., H. Lei, L. Wang, Q. Bu, S. Chen, and J. Wu. 2013. Thermal behaviour and kinetic study for woody biomass torrefaction and torrefied biomass pyrolysis by TGA. Biosystems Engineering 116 (4):420–26. doi:10.1016/j.biosystemseng.2013.10.003.
  • Sabil, K. M., M. A. Aziz, B. Lal, and Y. Uemura. 2013. Synthetic indicator on the severity of torrefaction of oil palm biomass residues through mass loss measurement. Applied Energy 111:821–26. doi:10.1016/j.apenergy.2013.05.067.
  • Saffe, A., A. Fernandez, M. Echegaray, G. Mazza, and R. Rodriguez. 2017. Pyrolysis kinetics of regional agro-industrial wastes using isoconversional methods. Biofuels 10 (2):245–57. doi:10.1080/17597269.2017.1316144.
  • Sarker, T. R., R. Azargohar, A. K. Dalai, and V. Meda. 2021. Enhancement of fuel and physicochemical properties of canola residues via microwave torrefaction. Energy Reports 7:6338–53. doi:10.1016/j.egyr.2021.09.068.
  • Silveira, E. A., S. Luz, K. Candelier, L. A. Macedo, and P. Rousset. 2021. An assessment of biomass torrefaction severity indexes. Fuel 288:119631. doi:10.1016/j.fuel.2020.119631.
  • Singh, S., J. P. Chakraborty, and M. K. Mondal. 2020. Intrinsic kinetics, thermodynamic parameters and reaction mechanism of non-isothermal degradation of torrefied Acacia nilotica using isoconversional methods. Fuel 259:116263. doi:10.1016/j.fuel.2019.116263.
  • Starink, M. J. 2003. The determination ofactivation energy from linear heating rate experiments: A comparison of the accuracy of isoconversion methods. Thermochimica Acta 404 (1–2):163–76. doi:10.1016/S0040-6031(03)00144-8.
  • Torres-Sciancalepore, R., A. Fernandez, D. Asensio, M. Riveros, M. P. Fabani, G. Fouga, R. Rodriguez, and G. Mazza. 2022. Kinetic and thermodynamic comparative study of quince bio-waste slow pyrolysis before and after sustainable recovery of pectin compounds. Energy Conversion and Management 252:115076. doi:10.1016/j.enconman.2021.115076.
  • Vamvuka, D., M. Diamantaki, and S. Sfakiotakis. 2021. Combustion performance and kinetic modeling of lignite blended with torrefied biomass of different origin. International Journal of Green Energy 1–9. doi:10.1080/15435075.2021.1987914.
  • Wannapeera, J., and N. Worasuwannarak. 2015. Examinations of chemical properties and pyrolysis behaviors of torrefied woody biomass prepared at the same torrefaction mass yields. Journal of Analytical and Applied Pyrolysis 115:279–87. doi:10.1016/j.jaap.2015.08.007.
  • White, J. E., W. J. Catallo, and B. L. Legendre. 2011. Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies. Journal of Analytical and Applied Pyrolysis 91:1–33. doi:10.1016/j.jaap.2011.01.004.
  • Winzer, F., T. Kraska, C. Elsenberger, T. Kötter, and R. Pude. 2017. Biomass from fruit trees for combined energy and food production. Biomass & Bioenergy 107:279–86. doi:10.1016/j.biombioe.2017.10.027.
  • Xi, Y., X. Yuan, M. Tan, S. Jiang, Z. Wang, Z. Huang, H. Wang, L. Jiang, and H. Li. 2021. Properties of oxidatively torrefied Chinese fir residue: Color dimension, pyrolysis kinetics, and storage behaviour. Fuel Processing Technology 213:106663. doi:10.1016/j.fuproc.2020.106663.
  • Yang, Y., M. M. Sun, M. Zhang, K. Zhang, D. H. Wang, and C. Lei. 2019. A fundamental research on synchronized torrefaction and pelleting of biomass. Renewable Energy 142:668–76. doi:10.1016/j.renene.2019.04.112.
  • Yang, H., R. Yan, H. Chen, D. H. Lee, and C. Zheng. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86 (12):1781–88. doi:10.1016/j.fuel.2006.12.013.
  • Yanqing, N., L. Siqi, C. R. Shaddix, and H. Shi’En, 2019. An intrinsic kinetics model to predict complex ash effects (ash film, dilution, and vaporization) on pulverized coal char burnout in air (O2/N2) and oxy-fuel (O2/CO2) atmospheres. Proceedings of the Combustion Institute 37:2781–90. 10.1016/j.proci.2018.06.010.
  • Zhang, C., S.-H. Ho, W.-H. Chen, Y. Fu, J.-S. Chang, and X. Bi. 2019. Oxidative torrefaction of biomass nutshells: Evaluations of energy efficiency as well as biochar transportation and storage. Applied Energy 235:428–41. doi:10.1016/j.apenergy.2018.10.090.
  • Zhang, C., W. Yang, W. H. Chen, S. H. Ho, A. Pétrissans, and M. Pétrissans. 2022. Effect of torrefaction on the structure and reactivity of rice straw as well as life cycle assessment of torrefaction process. Energy 240:122470. doi:10.1016/j.energy.2021.122470.
  • Zhou, C., G. Liu, S. Cheng, T. Fang, and P. K. S. Lam. 2014. Thermochemical and trace element behaviour of coal gangue, agricultural biomass and their blends during combustion. Bioresource Technology 166:243–51. doi:10.1016/j.biortech.2014.05.076.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.