100
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Studies on divergent solar chimney subjected to variable collector configurartions

, , , ORCID Icon & ORCID Icon
Pages 9522-9544 | Received 28 Jun 2022, Accepted 10 Sep 2022, Published online: 12 Oct 2022

References

  • Al-Kayiem, H. H., K. Yin Yin, and C. Yee Sing. 2012. Numerical simulation of solar chimney integrated with exhaust of thermal power plant. WIT Transactions on Engineering Sciences 75:61–72. doi:10.2495/HT120061.
  • Ayadi, A., Z. Driss, A. Bouabidi, and M. S. Abid. 2017. Experimental and numerical study of the impact of the collector roof inclination on the performance of a solar chimney power plant. Energy and Buildings 139:263–76. doi:10.1016/j.enbuild.2017.01.047.
  • Ayadi, A., H. Nasraoui, A. Bouabidi, Z. Driss, M. Bsisa, and M. S. Abid. 2018, October. Effect of the turbulence model on the simulation of the air flow in a solar chimney. ( 2016) International Journal of Thermal Sciences 130:423–34. doi:10.1016/j.ijthermalsci.2018.04.038.
  • Cao, F., H. Li, Y. Zhang, and L. Zhao. 2013. Numerical simulation and comparison of conventional and sloped solar chimney power plants: The case for lanzhou. The Scientific World Journal. doi:10.1155/2013/852864.
  • Cottam, P. J., P. Duffour, P. Lindstrand, and P. Fromme. 2016. Effect of canopy profile on solar thermal chimney performance. Solar Energy 129:286–96. doi:10.1016/j.solener.2016.01.052.
  • Das, P., and V. P. Chandramohan. 2018. CFD analysis on flow and performance parameters estimation of solar updraft tower (SUT) plant varying its geometrical configurations. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 40 (12):1532–46. doi:10.1080/15567036.2018.1477881.
  • Das, P., and V. P. Chandramohan. 2020. Performance characteristics of divergent chimney solar updraft tower plant. International Journal of Energy Research 45 (12):17159–74. doi:10.1002/er.5304.
  • Dhahri, A., A. Omri, and J. Orfi. 2014. Numerical study of a solar chimney power plant. Research Journal of Applied Sciences, Engineering and Technology 8 (18):1953–65. doi:10.19026/rjaset.8.1187.
  • Ghalamchi, M., and T. Ahanj. 2013. Numerical Simulation for Achieving Optimum Dimensions of a Solar Chimney Power Plant. Sustainable Energy 1 (2):26–31. doi:10.12691/rse-1-2-3.
  • Ghernaout, B., S. Bouabdallah, M. E. H. Attia, M. Arıcı, and Z. Driss. 2020. Parametric study of the airflow structure in a solar chimney. International Journal of Heat and Technology 38 (2):285–92. doi:10.18280/ijht.380202.
  • Hanna, M. B., T.-A.-M. Mekhail, O. M. Dahab, M. F. C. Esmail, and A. R. Abdel-Rahman. 2016. Experimental and Numerical Investigation of the Solar Chimney Power Plant’s Turbine. Open Journal of Fluid Dynamics 06 (04):332–42. doi:10.4236/ojfd.2016.64025.
  • Hooi, L. B., and S. K. Thangavelu. 2018. A parametric simulation of solar chimney power plant. IOP Conference Series: Materials Science and Engineering 297 (1). doi: 10.1088/1757-899X/297/1/012057.
  • Hu, S., D. Y. C. Leung, and J. C. Y. Chan. 2017. Numerical modelling and comparison of the performance of diffuser-type solar chimneys for power generation. Applied Energy 204:948–57. doi:10.1016/j.apenergy.2017.03.040.
  • Huang, M. H., L. Chen, Y. L. He, J. J. Cao, and W. Q. Tao. 2017. A two-dimensional simulation method of the solar chimney power plant with a new radiation model for the collector. International Communications in Heat and Mass Transfer 85:100–06. doi:10.1016/j.icheatmasstransfer.2017.04.014.
  • Koonsrisuk, A., S. Lorente, and A. Bejan. 2010. Constructal solar chimney configuration. International Journal of Heat and Mass Transfer 53 (1–3):327–33. doi:10.1016/j.ijheatmasstransfer.2009.09.026.
  • Krätzig, W. B. 2013. An integrated computer model of a solar updraft power plant. Advances in Engineering Software 6263:33–38. doi:10.1016/j.advengsoft.2013.04.018.
  • Lupi, F., C. Borri, R. Harte, W. B. Krätzig, and H. J. Niemann. 2015. Facing technological challenges of Solar Updraft Power Plants. Journal of Sound and Vibration 334:57–84. doi:10.1016/j.jsv.2014.03.010.
  • Mahdi, K., and N. Bellel. 2018. Contribution in the Study and Numerical Investigation of the Flow Characteristics in a Solar Chimney. IOP Conference Series: Earth and Environmental Science 168 (1). doi: 10.1088/1755-1315/168/1/012040.
  • Maia, C. B., A. G. Ferreira, R. M. Valle, and M. F. B. Cortez. 2009. Theoretical evaluation of the influence of geometric parameters and materials on the behavior of the airflow in a solar chimney. Computers & Fluids 38 (3):625–36. doi:10.1016/j.compfluid.2008.06.005.
  • Najmi, M., A. Nazari, H. Mansouri, and G. Zahedi. 2012. Feasibility study on optimization of a typical solar chimney power plant. Heat and Mass Transfer/waerme- Und Stoffuebertragung 48 (3):475–85. doi:10.1007/s00231-011-0894-5.
  • Natarajan, R., V. Jayaraman, and R. Sathyamurthy. 2022. Comparative studies on performance of solar towers with variable scale ratios. Environmental Science and Pollution Research 1. doi:10.1007/s11356-022-19079-0.
  • Patel, S. K., D. Prasad, and M. R. Ahmed. 2014. Computational studies on the effect of geometric parameters on the performance of a solar chimney power plant. Energy Conversion and Management 77:424–31. doi:10.1016/j.enconman.2013.09.056.
  • Pritam Das, V. P. C. 2020. 3D numerical study on estimating flow and performance parameters of solar updraft tower (SUT) plant: Impact of divergent angle of chimney, ambient temperature, solar flux and turbine efficiency. Journal of Cleaner Production 256:120353. doi:10.1016/j.jclepro.2020.120353.
  • Pritam Das, V. P. C. 2021. Experimental studies of a laboratory scale inclined collector solar updraft tower plant with thermal energy storage system. Journal of Building Engineering 41:102394. doi:10.1016/j.jobe.2021.102394.
  • Raj Keshari, S., C. V P, and P. Das. 2021. A 3D numerical study to evaluate optimum collector inclination angle of Manzanares solar updraft tower power plant. Solar Energy 226:455–67. doi:10.1016/j.solener.2021.08.062.
  • Ridwan, A., H. Hafizh, and M. R. Fauzi. 2018. Design and experimental test for solar chimney power plant: Case study in Riau Province, Indonesia. IOP Conference Series: Materials Science and Engineering 403 (1). doi: 10.1088/1757-899X/403/1/012092.
  • Saifi, N., N. Settou, B. Dokkar, B. Negrou, and N. Chennouf. 2012. Experimental study and simulation of airflow in solar chimneys. Energy Procedia 18:1289–98. doi:10.1016/j.egypro.2012.05.146.
  • Sakir, T., B. K. Piash, and S. Akhter. 2014. Design, Construction and Performance Test of a Small Solar Chimney Power Plant. Global Journal of Researches in Engineering 14 (1).
  • Sudprasert, S., C. Chinsorranant, and P. Rattanadecho. 2016. Numerical study of vertical solar chimneys with moist air in a hot and humid climate. International Journal of Heat and Mass Transfer 102:645–56. doi:10.1016/j.ijheatmasstransfer.2016.06.054.
  • Xu, Y., X. Zhou, and Q. Cheng. 2015. Performance of a large-scale solar updraft power plant in a moist climate. International Journal of Heat and Mass Transfer 91:619–29. doi:10.1016/j.ijheatmasstransfer.2015.07.124.
  • Zhou, X., Y. Xu, S. Yuan, R. Chen, and B. Song. 2014. Pressure and power potential of sloped-collector solar updraft tower power plant. International Journal of Heat and Mass Transfer 75:450–61. doi:10.1016/j.ijheatmasstransfer.2014.03.025.
  • Zhou, X., Y. Xu, and F. Zhang. 2017. Evaluation of effect of diurnal ambient temperature range on solar chimney power plant performance. International Journal of Heat and Mass Transfer 115:398–405. doi:10.1016/j.ijheatmasstransfer.2017.07.051.
  • Zhou, X., J. Yang, B. Xiao, and G. Hou. 2007. Experimental study of temperature field in a solar chimney power setup. Applied Thermal Engineering 27 (11–12):2044–50. doi:10.1016/j.applthermaleng.2006.12.007.
  • Zhou, X., J. Yang, B. Xiao, G. Hou, and F. Xing. 2009. Analysis of chimney height for solar chimney power plant. Applied Thermal Engineering 29 (1):178–85. doi:10.1016/j.applthermaleng.2008.02.014.
  • Zhou, X., S. Yuan, and M. A. D. S. Bernardes. 2013. Sloped-collector solar updraft tower power plant performance. International Journal of Heat and Mass Transfer 66:798–807. doi:10.1016/j.ijheatmasstransfer.2013.07.060.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.