139
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Numerical and experimental study of thermal efficiency of the transversal rectangular baffles with incline angle inside of solar air collector

&
Pages 8921-8942 | Received 16 Jun 2022, Accepted 14 Sep 2022, Published online: 26 Sep 2022

References

  • AISSAOUI, F. (2017). Contribution à l’étude de transfert de chaleur d’un capteur solaire placé dans un climat aride: cas de la région de Biskra. Doctoral dissertation, Université Mohamed Khider-Biskra.
  • Akpinar, E. K., and F. Koçyiğit. 2010. Energy and exergy analysis of a new flat-plate solar air heater having different obstacles on absorber plates. Applied Energy 87(11):3438–50.
  • Al-Damook, M., Z. A. H. Obaid, M. Al Qubeissi, D. Dixon-Hardy, J. Cottom, and P. J. Heggs. 2019. CFD modeling and performance evaluation of multipass solar air heaters. Numerical Heat Transfer, Part A: Applications 76(6):438–64. doi:10.1080/10407782.2019.1637228.
  • Ameur, H. 2019. Effect of the baffle inclination on the flow and thermal fields in channel heat exchangers. Results in Engineering 3:100021.
  • Aoues, K., N. Moummi Zellouf, M., Labed, A., Achouri, E., Benchabane, A., et al. 2009. Amélioration des performances thermiques d’un capteur solaire plan à air: Etude expérimentale dans la région de Biskra. Journal of Renewable Energies 12(2):237–48.
  • Aouissi, Z., F. Chabane, Teguia, M., Belghar, N., Moummi, N., Brima, A., et al. 2021. Determination of the heat transfer coefficient by convection, according to shape of the baffles (solar air collector).
  • Aouissi, Z., F. Chabane, M. S. Teguia, N. Belghar, N. Moummi, and A. Brima. 2022. Optimization of the heat exchange by adding the baffles to the streaming duct of the solar air collector. Iranian (Iranica) Journal of Energy & Environment 13(4):349–53. doi:10.5829/IJEE.2022.13.04.04.
  • Aravindh, M. A., and A. Sreekumar. 2016. Efficiency enhancement in solar air heaters by modification of absorber plate-a review. International Journal of Green Energy 13(12):1209–23.
  • Bensaci, C.-E., A. Moummi, F. J. Sanchez de la Flor, E. A. Rodriguez Jara, A. Rincon-Casado, and A. Ruiz-Pardo. 2020. Numerical and experimental study of the heat transfer and hydraulic performance of solar air heaters with different baffle positions. Renewable Energy 155:1231–44. doi:10.1016/j.renene.2020.04.017.
  • Chabane, F., F. Grira, N. Moummi, and A. Brima. 2019. Experimental study of a solar air heater by adding an arrangement of transverse rectangular baffles perpendicular to the air stream. International Journal of Green Energy 16(14):1264–77. doi:10.1080/15435075.2019.1671401.
  • Chabane, F., N. Hatraf, and N. Moummi. 2014. Experimental study of heat transfer coefficient with rectangular baffle fin of the solar air heater. Frontiers in Energy 8(2):160–72.
  • Chabane, F., D. Kherroubi, A. Arif, N. Moummi, and A. Brima. 2020. Influence of the rectangular baffle on heat transfer and pressure drop in the solar collector. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–17. doi:10.1080/15567036.2020.1767727.
  • Chabane, F., N. Moummi, and S. Benramache. 2012. Performances of a single pass solar air collector with longitudinal fins inferior an absorber plate. American Journal of Advanced Scientific Research 1(4):146–57.
  • Chabane, F., N. Moummi, and S. Benramache. 2013. Experimental analysis on thermal performance of a solar air collector with longitudinal fins in a region of Biskra, Algeria. Journal of Power Technologies 93(1):2083–4195.
  • Chabane, F., N. Moummi, and S. Benramache. 2014. Experimental study of heat transfer and thermal performance with longitudinal fins of solar air heater. Journal of Advanced Research 5(2):183–92. doi:10.1016/j.jare.2013.03.001.
  • Chabane, F., N. Moummi, and A. Brima. 2018. Experimental study of thermal efficiency of a solar air heater with an irregularity element on absorber plate. International Journal of Heat and Technology 36(3):855–60. doi:10.18280/ijht.360311.
  • Chamoli, S., and N. S. Thakur. 2013. Effect of roughness height ratio in V down perforated baffle roughness on thermohydraulic performance of solar air heater: An experimental study. International Journal of Ambient Energy 36(5):242–47.
  • Daliran, A., and Y. Ajabshirchi. 2018. Theoretical and experimental research on effect of fins attachment on operating parameters and thermal efficiency of solar air collector. Information Processing in Agriculture 5(4):411–21.
  • Duffie, J. A., W. A. Beckman. 1980. Solar engineering and themal processes. John Wiley & Sons. 3.
  • El-Sebaii, A. A., S. Aboul-Enein, M. R. I. Ramadan, S. M. Shalaby, and B. M. Moharram. 2011. Investigation of thermal performance of-double pass-flat and v-corrugated plate solar air heaters. Energy 36(2):1076–86. doi:10.1016/j.energy.2010.11.042.
  • Esen, H. 2008. Experimental energy and exergy analysis of a double-flow solar air heater having different obstacles on absorber plates. Building and Environment 43(6):1046–54.
  • Fiuk, J. J., and K. Dutkowski. 2019. Experimental investigations on thermal efficiency of a prototype passive solar air collector with wavelike baffles. Solar Energy 188:495–506.
  • Fox, R. W., A. T. McDonald, John, W. M., et al. 2020. Fox and McDonald’s introduction to fluid mechanics. John Wiley & Sons.
  • Gawande, V. B., A. S. Dhoble, D. B. Zodpe, and S. Chamoli. 2016. A review of CFD methodology used in literature for predicting thermo-hydraulic performance of a roughened solar air heater. Renewable and Sustainable Energy Reviews 54:550–605. doi:10.1016/j.rser.2015.10.025.
  • Hernández, A. L., J. E. Quiñonez, and F. H. López. 2019. Transient numerical study of thermo-energetic performance of solar air heating collectors with metallic porous matrix. Solar Energy 178:181–92. doi:10.1016/j.solener.2018.12.035.
  • Hu, J., K. Liu, M. Guo, G. Zhang, Z. Chu, and M. Wang. 2019. Performance improvement of baffle-type solar air collector based on first chamber narrowing. Renewable Energy 135:701–10. doi:10.1016/j.renene.2018.12.049.
  • Jin, D., M. Zhang, P. Wang, and S. Xu. 2015. Numerical investigation of heat transfer and fluid flow in a solar air heater duct with multi V-shaped ribs on the absorber plate. Energy 89:178–90.
  • Karmare, S. V., and A. N. Tikekar. 2010. Analysis of fluid flow and heat transfer in a rib grit roughened surface solar air heater using CFD. Solar Energy 84(3):409–17.
  • Khanlari, A., H. Ö. Güler, A. D. Tuncer, C. Şirin, Y. C. Bilge, Y. Yılmaz, and A. Güngör. 2020. Experimental and numerical study of the effect of integrating plus-shaped perforated baffles to solar air collector in drying application. Renewable Energy 145:1677–92. doi:10.1016/j.renene.2019.07.076.
  • Khanoknaiyakarn, C., S. Kwankaomeng, Promvonge, P., et al. (2011). Thermal performance enhancement in solar air heater channel with periodically V-shaped baffles. 2011 International Conference & Utility Exhibition on Power and Energy Systems: Issues and Prospects for Asia (ICUE), 28-30 September 2011 Pattaya, Thailand, IEEE.
  • Lanjewar, A., J. Bhagoria, and R. M. Sarviya. 2011. Heat transfer and friction in solar air heater duct with W-shaped rib roughness on absorber plate. Energy 36(7):4531–41. doi:10.1016/j.energy.2011.03.054.
  • Layek, A., J. S. Saini, and S. C. Solanki. 2009. Effect of chamfering on heat transfer and friction characteristics of solar air heater having absorber plate roughened with compound turbulators. Renewable Energy 34(5):1292–98.
  • Lee, C. K., and S. A. Abdel-Moneim. 2001. Computational analysis of heat transfer in turbulent flow past a horizontal surface with two-dimensional ribs. International Communications in Heat and Mass Transfer 28(2):161–70.
  • Menasria, F., M. Zedairia, and A. Moummi. 2017. Numerical study of thermohydraulic performance of solar air heater duct equipped with novel continuous rectangular baffles with high aspect ratio. Energy 133:593–608. doi:10.1016/j.energy.2017.05.002.
  • Ozgen, F., M. Esen, and H. Esen. 2009. Experimental investigation of thermal performance of a double-flow solar air heater having aluminium cans. Renewable Energy 34(11):2391–98. doi:10.1016/j.renene.2009.03.029.
  • Patankar, S. J. N. Y. 1980. Numerical heat transfer and fluid flow Hemisphere Publishing Corporation.
  • Potgieter, M., C. Bester, and M. Bhamjee. 2020. Experimental and CFD investigation of a hybrid solar air heater. Solar Energy 195:413–28. doi:10.1016/j.solener.2019.11.058.
  • Safer, N., M. Woloszyn, and J. J. Roux. 2005. Three-Dimensional simulation with a CFD tool of the airflow phenomena in single floor double-skin facade equipped with a venetian blind. Solar Energy 79(2):193–203.
  • Singh, A. P., and O. Singh. 2018. Performance enhancement of a curved solar air heater using CFD. Solar Energy 174:556–69.
  • Tao, Y. B., Y. L. He, J. Huang, Z. G. Wu, and W. Q. Tao. 2007. Numerical study of local heat transfer coefficient and fin efficiency of wavy fin-and-tube heat exchangers. International Journal of Thermal Sciences 46(8):768–78.
  • Ural, T. 2019. Experimental performance assessment of a new flat-plate solar air collector having textile fabric as absorber using energy and exergy analyses. Energy 188:116116.
  • Vengadesan, E., and R. Senthil. 2020. A review on recent developments in thermal performance enhancement methods of flat plate solar air collector. Renewable and Sustainable Energy Reviews 134:110315.
  • Wang, D., J. Liu, Liu, Y., Wang, Y., LI, B., et al. 2020. Evaluation of the performance of an improved solar air heater with “S” shaped ribs with gap. Solar Energy 195:89–101.
  • Webb, R. L., and E. R. G. Eckert. 1972. Application of rough surfaces to heat exchanger design. International Journal of Heat and Mass Transfer 15(9):1647–58.
  • Yadav, A. S., and J. L. Bhagoria. 2013. Heat transfer and fluid flow analysis of solar air heater: A review of CFD approach. Renewable and Sustainable Energy Reviews 23:60–79.
  • Yadav, A. S., and J. L. Bhagoria. 2014. A numerical investigation of square sectioned transverse rib roughened solar air heater. International Journal of Thermal Sciences 79:111–31.
  • Yeh, H. M., and C. D. Ho. 2013. Collector efficiency in downward-type internal-recycle solar air heaters with attached fins. Energies 6(10):5130–44.
  • Yilmaz, A., and A. Er. 2021. Thermal analysis of solar air collectors designed in different types with different flow rates using aluminum cans. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 44(2): 5545–61.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.