176
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical study of high lift devices to improve airfoil aerodynamic performance

, , , ORCID Icon, & ORCID Icon
Pages 9135-9155 | Received 16 May 2022, Accepted 21 Sep 2022, Published online: 29 Sep 2022

References

  • Abott, I., and A. Von Doenhoff. 1959. Theory of wing sections. New York: Dover Publications.
  • Agarwal, R., J. Vishwajeeth, and E. Chullai. 2017. FREE INVENTORY PLATFORM MANAGES CHEMICAL RISKS, ADDRESSES CHEMICAL ACCOUNTABILITY, and MEASURES COST-EFFECTIVENESS. International Journal of Advances in Science Engineering and Technology 5 (3):25–29.
  • Aramendia, I., U. Fernandez-Gamiz, J. Sancho, and E. Zulueta. 2016. State of the art of active and passive flow devices for wind turbines. DYNA Journal 91 (5):512–16. doi:10.6036/7807.
  • Aramendia, I., U. Fernandez-Gamiz, E. Zulueta, A. Saenz-Aguirre, and D. Teso-Fz-Betoño. 2019. Parametric study of a gurney flap implementation in a DU91W(2)250 airfoil. Energies 12 (2):2. doi:10.3390/en12020294.
  • Arce-León, C. 2010. Modelling of Serrated Trailing Edges to Reduce Aerodynamic Noise in Wind Turbines Using Computational Fluid Dynamics. MSc diss., Uppsala Universitet.
  • Arce-León, C., S. Pröbsting, D. Ragni, F. Scarano, and J. Madsen. 2016. Flow topology and acoustic emissions of trailing edge serrations at incidence. Experiments in Fluids 57 (5):1–17. doi:10.1007/s00348-016-2181-1.
  • Asheim, M., K. R. Dixon, D. Eisenberg, H. F. Hansen, J. Mullings, P. Rimmington, M. Singh, A. Steingrimsson, and O. A. Zamora. 2016. Airfoil trailing edge apparatus for noise reduction. U.S. Patent Application No. 13/900,756.
  • Astolfi, D., F. Castellani, M. Fravolini, S. Cascianelli, and L. Terzi. 2019. Precision computation of wind turbine power upgrades: an aerodynamic and control optimization test case. Journal of Energy Resources Technology 141 (5). doi: 10.1115/1.4042450.
  • Ballesteros-Coll, A., U. Fernandez-Gamiz, I. Aramendia, E. Zulueta, and J. M. Lopez-Guede. 2020. Computational methods for modelling and optimization of flow control devices. Energies 13 (14):3710. doi:10.3390/en13143710.
  • Ballesteros-Coll, A., K. Portal-Porras, U. Fernandez-Gamiz, E. Zulueta, and J. M. Lopez-Guede. 2021. Rotating microtab implementation on a DU91W250 airfoil based on the cell-set model. Sustainability 13 (16):9114. doi:10.3390/su13169114.
  • Barlas, T., and G. Kuik. 2010. Review of state of the art in smart rotor control research for wind turbines. Progress in Aerospace Sciences 46 (1):1–27. doi:10.1016/j.paerosci.2009.08.002.
  • Canet, H., P. Bortolotti, and C. L. Bottasso. 2020. On the scaling of wind turbine rotors. Wind Energy Science Discussions 6 (3):601–26. doi:10.519/we-2020-66.
  • Cao, H., M. Zhang, Y. Zhang, and T. Zhou. 2021. A general model for trailing edge serrations simulation on wind turbine airfoils. Theory Application Mechanical Letters 11 (4):100284. doi:10.519/we-2020-66.
  • Chen, J., and Q. Wang. 2017. Wind turbine airfoils and blades: Optimization design theory. Green Alternative Energy Resources. China Science Publishing & Media Ltd.
  • Fernandez-Gamiz, U., M. Gomez-Mármol, and T. Chacón-Rebollo. 2018. Computational modeling of gurney flaps and microtabs by POD method. Energies 11 (8):2091. doi:10.3390/en11082091.
  • Fernandez-Gamiz, U., E. Zulueta, A. Boyano, J. Ramos-Hernaz, and J. M. Lopez-Guede. 2017. Microtab design and implementation on a 5 MW wind turbine. Applied Sciences 7 (6):536. doi:10.3390/app7060536.
  • Fuglsang, P., and C. Bak. 2003. Status of the Riso wind turbine airfoils. Paper presented at the European Wind Energy Conference, Madrid.
  • Galera, L., P. Martinez-Filgueira, U. Fernandez-Gamiz, E. Zulueta, J. M. Lopez, and J. M. Blanco. 2019. A triangular vortex generator modeling on a DU97-W-300 airfoil by a source term model. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 233 (5):635–45. doi:10.1177/0957650919850449.
  • Gamesa, S. 2020. DinoTails next generation World-leading noise reduction technology.
  • Global Wind Energy Council. 2021. GWEC Global Wind Report.
  • Graham, M., A. Muradian, and L. Traub. 2017. Experimental study on the effect of gurney flap thickness on airfoil performance. Journal of Aircraft 55 (2):897–904. doi:10.2514/1.C034547.
  • Gruber, M., P. Joseph, and T. Chong. 2011. On the mechanisms of serrated airfoil trailing edge noise reduction. 17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference). Aeroacoustics Conferences. doi: 10.2514/6.2011-2781.
  • Howe, M. 1991. Aerodynamic noise of a serrated trailing edge. Journal of Fluids and Structures 5 (1):33–45. doi:10.1016/0889-9746(91)80010-B.
  • IRENA. 2021. Renewable power generation costs in 2020. Abu Dhabi: International Renewable Energy Agency.
  • Jain, S., N. Sitaram, and S. Krishnaswamy. 2015.Computational investigations on the effects of gurney flap on airfoil aerodynamics. International Scholarly Research Notices 2015: 1–11.doi: 10.1155/2015/402358
  • Jonkman, J., S. Butterfield, W. Musial, and G. Scott. 2009. Definition of a 5-MW Reference Wind Turbine for Offshore System Development ( no. NREL/TP-500-38060) . no. NREL/TP-500-38060, Golden, CO, United States. doi: 10.2172/947422.
  • Kaul, U. K., and N. T. Nguyen. 2016. Lift optimization study of a multi-element three-segment variable camber airfoil. In: 34th AIAA Applied Aerodynamics Conference. doi: 10.2514/6.2016-3569.
  • Kral, L. D. 1998. Recent experience with different turbulence models applied to the calculation of flow over aircraft components. Progress in Aerospace Sciences 34 (7–8):481–541.
  • Kuliboer, R. 2018. Low-Noise wind turbine design using DinoTails Next Generation. NSG, Amersfoort: Siemens Gamesa.
  • Liu, X., H. Jawahar, and R. Theunissen. 2015. Aerodynamic and Aeroacoustic performance of serrated airfoils. In: 21st AIAA/CEAS Aeroacoustics Conference, Dallas, Texas. doi: 10.2514/6.2015-2201.
  • Liu, X., H. Kamliya Jawahar, M. Azarpeyvand, and R. Theunissen. 2017. Aerodynamic performance and wake development of airfoils with serrated trailing edges. AAIA Journal 55 (11):3669–80. doi:10.2514/1.J055817.
  • Llorente, E., and D. Ragni. 2018. Trailing edge serrations effects on the aerodynamic performance of a NACA 643418. Wind Energy 22 (3):392–406. doi:10.1002/we.2293.
  • Llorente, E., and D. Ragni. 2019. Serrations effect on the aerodynamic performance of wind turbine airfoils. Journal of Physics: Conference Series 1222. doi: 10.1088/1742-6596/1222/1/01/012019.
  • Manegar, F., T. Carolus, E. Thouant, H. Liu, and K. Volkmer. 2017. An experimental parametric study of airfoil trailing edge serrations. In: 7th International Conference on Wind Turbine Noise, Rotterdam.
  • Menter, F. R. 1994. Two-Equation eddy-viscosity turbulence models for engineering applications. AIAA Journal 32 (8):1598–605. doi:10.2514/3.12149.
  • Miller, G. E. 1995. Comparative performance tests on the Mod-2, 2.5-MW wind turbine with and without vortex generators. In: DASCON Engineering, Collected Papers on Wind Turbine Technology.
  • Nayeri, C., H. Mueller-Vahl, G. Pechlivanoglou, and C. O. Paschereit. 2013. Vortex generators for wind turbine blades: A combined wind tunnel and wind turbine parametric study. ASME Turbo Expo 2012 44724:899–914. doi:10.1115/GT2012-69197.
  • Pechlivanoglou, G., and C. O. Paschereit. 2013. Passive and active flow control solutions for wind turbine blades. Smart Rotorblades for Wind Turbines. doi:10.14279/depositonce-3487.
  • Roskam, J., and C. T. Lan. 1997. Airplane aerodynamics and performance. DARCorporation.
  • Serrano-Gonzalez, J., and R. Lacal-Arántegui. 2016. Technological evolution of onshore wind turbines—a market‐based analysis. Wind Energ 19: 12 2171–87. 10.1002/we.1974
  • Sørensen, N., B. Méndez, A. Muñoz, G. Sieros, E. Jost, T. Lutz, G. Papadakis, S. Voutsinas, G. N. Barakos, S. Colonia, et al. 2016. CFD Code comparison for 2D airfoil flows In Journal of Physics: Conference Series, Vol. 753 8 IOP Publishing, 10.1088/1742-6596/753/8/082019
  • Timmer, W. 1993. Wind tunnel results for a 25% thick wind turbine blade airfoil. Proceedings EUWEC 93:416–19.
  • Timmer, W., and R. Van Rooij. 2003. Summary of the delft university wind turbine dedicated airfoils. Journal of Solar Energy Engineering 125 (4):488–96. doi:10.1115/1.1626129.
  • Troldborg, N., N. Sørensen, F. Zahle, and P. E. Réthoré. 2015. Simulation of a MW rotor equipped with vortex generators using CFD and an actuator shape model. In: 53rd AIAA Aerospace Sciences Meeting. doi: 10.2514/6.2015-1035.
  • Van Dam, C., and S. Johnson. 2008. Active load control techniques for wind turbines. Sandia Report 2008–4809. doi: 10.2172/943932.
  • Van Rooij, R., and W. Timmer. 2003. Roughness sensitivity considerations for thick rotor blade airfoils. Journal of Solar Energy Engineering 125 (4):468–78. doi:10.1115/1.1624614.
  • Villalpando, F., M. Ilinca, and A. Reggio. 2011.Assessment of Turbulence models for flow simulation around a wind turbine airfoil. Modelling and Simulation in Engineering 2011: 1–8.doi: 10.1155/2011/714146
  • Vinokur, M. 1983. On one-dimensional stretching functions for finite-difference calculations. Journal of Computational Physics, 50 (2): 215–234. doi: 10.1016/0021-9991(83)90065-7
  • Wood, D. 2020. Grand challenges in wind energy research. Frontiers in Energy Research 8. doi:10.3389/fenrg.2020.624646.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.