174
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Combined effects of engine characteristics and fuel aromatic content on polycyclic aromatic hydrocarbons and toxicity

&
Pages 9156-9171 | Received 23 May 2022, Accepted 20 Sep 2022, Published online: 02 Oct 2022

References

  • Agarwal, A. K. 2007. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Progress in Energy and Combustion Science 33:233–71. https://doi.org/10.1016/j.pecs.2006.08.003.
  • An, H., W. M. Yang, A. Maghbouli, J. Li, S. K. Chou, and K. J. Chua. 2013. Performance, combustion and emission characteristics of biodiesel derived from waste cooking oils. Applied Energy 112:493–99.
  • Atmanli, A., and N. Yilmaz. 2020. An experimental assessment on semi-low temperature combustion using waste oil biodiesel/c3-C5 alcohol blends in a diesel engine. Fuel 260:116357.
  • Bakeas, E. B., and G. Karavalakis. 2013. Regulated, carbonyl and polycyclic aromatic hydrocarbon emissions from a light-duty vehicle fueled with diesel and biodiesel blends. Environmental Science: Processes & Impacts 15(2):412–22. doi:10.1039/C2EM30575E.
  • Bakeas, E., G. Karavalakis, and S. Stournas. 2011. Biodiesel emissions profile in modern diesel vehicles. Part 1: Effect of biodiesel origin on the criteria emissions. The Science of the Total Environment 409:1670–76.
  • Ballesteros, R., Á. Ramos, and J. Sánchez-Valdepeñas. 2020. Particle-Bound PAH emissions from a waste glycerine-derived fuel blend in a typical automotive diesel engine. Journal of the Energy Institute 93(5):1970–77.
  • Bergthorson, J. M., and M. J. Thomson. 2015. A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines. Renewable and Sustainable Energy Reviews 42:1393–417. doi:10.1016/j.rser.2014.10.034
  • Borillo, G. C., Y. S. Tadano, A. F. L. Godoi, T. Pauliquevis, H. Sarmiento, D. Rempel, C. I. Yamamoto, M. R. R. Marchi, S. Potgieter-Vermaak, and R. H. M. Godoi. 2018. Polycyclic Aromatic Hydrocarbons (PAHs) and nitrated analogs associated to particulate matter emission from a Euro V-SCR engine fuelled with diesel/biodiesel blends. The Science of the Total Environment 644:675–82. doi:10.1016/j.scitotenv.2018.07.007
  • Borras, E., L. A. Tortajada-Genaro, M. Vazquez, and B. Zielinska. 2009. Polycyclic aromatic hydrocarbon exhaust emissions from different reformulated diesel fuels and engine operating conditions. Atmospheric Environment 43:5944–52.
  • Can, O. 2004. Combustion characteristics, performance and exhaust emissions of a diesel engine fueled with a waste cooking oil biodiesel mixture. Energy Conversion and Management 87:676–86. doi:10.1016/j.enconman.2014.07.066
  • Cao, X., X. Hao, X. Shen, X. Jiang, B. Wu, and Z. Yao. 2017. Emission characteristics of polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons from diesel trucks based on on-road measurements. Atmospheric Environment 148:190–96.
  • Channappagoudra, M., K. Ramesh, and G. Manavendra. 2019. Comparative study of standard engine and modified engine with different piston bowl geometries operated with B20 fuel blend. Renewable Energy 133:216–32. doi:10.1016/j.renene.2018.10.027
  • Cheung, C. S., L. Zhu, and Z. Huang. 2009. Regulated and unregulated emissions from a diesel engine fueled with biodiesel and biodiesel blended with methanol. Atmospheric Environment 43:4865–72.
  • Christensen, A., C. Ostamn, and R. Westerholm. 2005. Ultrasound-Assisted extraction and on-line LC–GC–MS for determination of polycyclic aromatic hydrocarbons (PAH) in urban dust and diesel particulate matter. Analytical and Bioanalytical Chemistry 381:1206–16. doi:10.1007/s00216-005-3065-z
  • Correa, S. M., and G. Arbilla. 2006. Aromatic hydrocarbons emissions in diesel and biodiesel exhaust. Atmospheric Environment 40:6821–26.
  • Correa, S. M., and G. Arbilla. 2008. Carbonyl emissions in diesel and biodiesel exhaust. Atmospheric Environment 42:769–75.
  • Courter, L. A., A. Luch, T. Musafia-Jeknic, V. M. Arlt, K. Fischer, R. Bildfell, C. Pereira, D. H. Phillips, M. C. Poirier, and W. M. Baird. 2008. The influence of diesel exhaust on polycyclic aromatic hydrocarbon-induced DNA damage, gene expression, and tumor initiation in Sencar mice in vivo. Cancer Letters 265(1):135–47. doi:10.1016/j.canlet.2008.02.017.
  • Department of Health and Human Services (HHS), Public Health Service. 1995. Agency for Toxic Substances and Disease Registry (ATSDR). Polycyclic Aromatic Hydrocarbons (PAHs).
  • EN ISO 11338-2. 2003. Stationary source emissions-Determination of gas and particle-phase polycyclic aromatic hydrocarbons -Part 2: Sample preparation, clean-up and determination. Brussels, Belgium.
  • EN ISO 8178–6. 2018. Reciprocating internal combustion engines–exhaust emission measurement–part 6: Report of measuring results and test. European Committee for Standardization, Brussels, Belgium.
  • Enweremadu, C. C., and H. L. Rutto. 2010. Combustion, emission and engine performance characteristics of used cooking oil biodiesel—A review. Renewable and Sustainable Energy Reviews 14(9):2863–73. doi:10.1016/j.rser.2010.07.036.
  • Ge, J. G., H. Y. Kim, S. K. Yoon, and N. J. Choi. 2018. Reducing volatile organic compound emissions from diesel engines using canola oil biodiesel fuel and blends. Fuel 218:266–74. doi:10.1016/j.fuel.2018.01.045
  • Guarieiro, A. L. N., J. V. Santos, A. E. Fernandez, E. A. Torres, G. O. da Rocha, and J. B. de Andrade. 2014. Redox activity and PAH content in size-classified nanoparticles emitted by a diesel engine fuelled with biodiesel and diesel blends. Fuel 116:490–97. doi:10.1016/j.fuel.2013.08.029
  • Hiroyuki, Y., K. Misawa, D. Suzuki, K. Tanaka, J. Matsumoto, M. Fujii, and K. Tanaka. 2011. Detailed analysis of diesel vehicle exhaust emissions: Nitrogen oxides, hydrocarbons and particulate size distributions. Proceedings of the Combustion Institute 33:2895–902. doi:10.1016/j.proci.2010.07.001
  • Holman, J. P. 2012. Experimental methods for engineers. 8th ed., New York: McGraw-Hill Companies.
  • Huang, W., J. S. Thomas, N. Long, T. Wang, H. Chen, F. Wu, R. F. Herrick, D. C. Christiani, and H. Ding. 2007. Characterizing and biological monitoring of polycyclic aromatic hydrocarbons in exposures to diesel exhaust. Environmental Science & Technology 41:2711–16.
  • Karavalakis, G., V. Boutsika, S. Stournas, and E. Bakeas. 2011. Biodiesel emissions profile in modern diesel vehicles. Part 2: Effect of biodiesel origin on carbonyl, PAH, nitro-PAH and oxy-PAH emissions. The Science of the Total Environment 409:738–47.
  • Karavalakis, G., G. Deves, G. Fontaras, S. Stournas, Z. Samaras, and E. Bakeas. 2010. The impact of soy-based biodiesel on PAH, nitro-PAH and oxy-PAH emissions from a passenger car operated over regulated and nonregulated driving cycles. Fuel 89(12):3876–83. doi:10.1016/j.fuel.2010.07.002.
  • Karavalakis, G., G. Fontaras, D. Ampatzoglou, M. Kousoulidou, S. Stournas, Z. Samaras, and E. Bakeas. 2010. Effects of low concentration biodiesel blends application on modern passenger cars. Part 3: Impact on PAH, nitro-PAH, and oxy-PAH emissions. Environmental Pollution 158(5):1584–94. doi:10.1016/j.envpol.2009.12.017.
  • Khan, S., R. Panua, and P. K. Bose. 2018. Combined effects of piston bowl geometry and spray pattern on mixing, combustion and emissions of a diesel engine: A numerical approach. Fuel 225:203–17.
  • Kothiyal, N. C., V. Kumar, N. Kumar, P. S. Saruchi, S. Pandey, and S. Ansar. 2022. Reduction of carcinogenic PAHs from petrodiesel engine exhaust by blending of green diesel (A new development in renewable fuels) with different biodiesel fuels. Environmental Technology & Innovation 25:102089. doi:10.1016/j.eti.2021.102089
  • Levendis, Y. A., A. Atal, and J. B. Carlson. 1998. On the correlation of CO and PAH emissions from the combustion of pulverized coal and waste tires. Environmental Science & Technology 32(23):3767–77. doi:10.1021/es980399f.
  • Lim, C. H. M., G. A. Ayoko, L. Morawska, Z. D. Ristovski, and E. R. Jayaratne. 2005. Effect of fuel composition and engine operating conditions on polycyclic aromatic hydrocarbon emissions from a fleet of heavy-duty diesel buses. Atmospheric Environment 39:7836–48.
  • Lin, Y. C., W. J. Lee, and H. C. Hou. 2006. PAH emissions and energy efficiency of palm-biodiesel blends fueled on diesel generator. Atmospheric Environment 40:3930–40. doi:10.1016/j.atmosenv.2006.02.026
  • Lin, Y. C., W. J. Lee, T. S. Wu, and C. Wang. 2006. Comparison of PAH and regulated harmful matter emissions from biodiesel blends and paraffinic fuel blends on engine accumulated mileage test. Fuel 85:2516–23. doi:10.1016/j.fuel.2006.04.023
  • Lin, Y. C., T. Y. Wu, W. C. C. Yang, and C. -B. Chen. 2009. Reducing emissions of carbonyl compounds and regulated harmful matters from a heavy-duty diesel engine fueled with paraffinic/biodiesel blends at one low load steady-state condition. Atmospheric Environment 43:2642–47. doi:10.1016/j.atmosenv.2009.02.007
  • Lom, M. V., J. Czerwinski, J. Lenίcek, M. Sekyra, and J. Topinka. 2012. Polycyclic aromatic hydrocarbons (PAHs) in exhaust emissions from diesel engines powered by rapeseed oil methylester and heated non-esterified rapeseed oil. Atmospheric Environment 60:253–61. doi:10.1016/j.atmosenv.2012.06.035
  • Lu, T., Z. Huang, C. S. Cheung, and J. Ma. 2012. Size distribution of EC, OC and particle-phase PAHs emissions from a diesel engine fueled with three fuels. The Science of the Total Environment 438:33–41.
  • Mohod, T. R., P. C. Jikar, and V. S. Khobragade. 2013. Experimental investigation of a diesel engine fueled with waste cooking oil ethyl ester. International Journal of Research in Engineering and Technology (IJRET) 2(5):240–44.
  • Nielsen, T. 1984. Reactivity of polycyclic aromatic hydrocarbons toward nitrating species. Environmental Science & Technology 18:157–63. doi:10.1021/es00121a005
  • Nisbet, I. C., and P. K. Lagoy. 1992. Toxic equivalency factors (TEFs) for polycyclic aromatic- hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology 16:290–300. doi:10.1016/0273-2300(92)90009-X
  • Nyström, R., I. Sadiktsis, T. M. Ahmed, R. Westerholm, J. H. Koegler, A. Blomberg, T. Sandström, and C. Boman. 2016. Physical and chemical properties of RME biodiesel exhaust particles without engine modifications. Fuel 186:261–69.
  • Park, S. 2012. Optimization of combustion chamber geometry and engine operating conditions for compression ignition engines fueled with dimethyl ether. Fuel 97:61–71.
  • Payri, F., V. R. Bermudez, B. Tormos, and W. G. Linares. 2009. Hydrocarbon emissions speciation in diesel and biodiesel exhausts. Atmospheric Environment 43:1273–79. doi:10.1016/j.atmosenv.2008.11.029
  • Rajasekar, E., A. Murugesan, R. Subramanian, and N. Nedunchezhian. 2010. Review of NOx reduction technologies in CI engines fuelled with oxygenated biomass fuels. Renewable and Sustainable Energy Reviews 14(7):2113–21. doi:10.1016/j.rser.2010.03.005.
  • Rakopoulos, C. D., G. M. Kosmadakis, and E. G. Pariotis. 2010. Investigation of piston bowl geometry and speed effects in a motored HSDI diesel engine using a CFD against a Quasi-Dimensional model. Energy Conversion and Management 51(3):470–84. doi:10.1016/j.enconman.2009.10.010.
  • Ravindra, K., R. Sokhi, and R. Van Grieken. 2008. Atmospheric polycyclic aromatic hydrocarbons:Source attribution, emission factors and regulation. Atmospheric Environment 42:2895–921.
  • Singh, D., D. Sharma, S. L. Soni, C. S. Inda, S. Sharma, P. K. Sharma, and A. Jhalani. 2021. A comprehensive review of biodiesel production from waste cooking oil and its use as fuel in compression ignition engines: 3rd generation cleaner feedstock. Journal of Cleaner Production 307:12729. doi:10.1016/j.jclepro.2021.127299
  • Steiner, S., J. Czerwinski, P. Comte, O. Popovicheva, E. Kireeva, L. Muller, N. Heeb, A. Mayer, A. Fink, and B. Rothen-Rutishauser. 2013. Comparison of the toxicity of diesel exhaust produced by bio- and fossil diesel combustion in human lung cells in vitro. Atmospheric Environment 81:380–88. doi:10.1016/j.atmosenv.2013.08.059
  • Stout, S. A., S. D. Emsbo-Mattingly, G. S. Douglas, A. D. Uhler, and K. J. McCarthy. 2015. Beyond 16 priority pollutant PAHs: A review of PACs used in environmental forensic chemistry. Polycyclic Aromatic Compounds 35(2–4):285–315. doi:10.1080/10406638.2014.891144.
  • Tan, P., Y. Zhong, Z. Hu, and D. Lou. 2017. Size distributions, PAHs and inorganic ions of exhaust particles from a heavy duty diesel engine using B20 biodiesel with different exhaust aftertreatments. Energy 141:898–906.
  • USA EPA. 1993. Provisional guidance for quantitative risk assessment of polycyclic aromatic hydrocarbons. EPA/600/R-93/089.
  • Venkadesan, G., N. M. Mohandoss, and D. Gobalakichenin. 2016. Effect of combustion chamber geometry on performance, combustion, and emission of direct injection diesel engine with ethanol-diesel blend. Thermal Science 20:937–46.
  • Wu, S., J. Bao, Z. Wang, H. Zhang, and R. Xiao. 2021. The regulated emissions and PAH emissions of bio-based long-chain ethers in a diesel engine. Fuel Processing Technology 214:106724.
  • Xu, L., J. Yu, G. Wan, and L. Sun. 2021. Emission characteristics and source identification of polycyclic aromatic hydrocarbons (PAHs) from used mineral oil combustion. Fuel 304:121357.
  • Yaliwal, V. S., N. R. Banapurmath, N. M. Gireesh, R. S. Hosmath, T. Donateo, and P. G. Tewari. 2016. Effect of nozzle and combustion chamber geometry on the performance of a diesel engine operated on dual fuel mode using renewable fuels. Renewable Energy 93:483–501.
  • Yilmaz, N. 2012. Effects of intake air preheat and fuel blend ratio on a diesel engine operating on biodiesel–methanol blends. Fuel 94:444–47.
  • Yilmaz, N. 2012. Performance and emission characteristics of a diesel engine fuelled with biodiesel–ethanol and biodiesel–methanol blends at elevated air temperatures. Fuel 94:440–43.
  • Yilmaz, N., and S. M. Davis. 2016. Polycyclic aromatic hydrocarbon (PAH) formation in a diesel engine fueled with diesel, biodiesel and biodiesel/n-butanol blends. Fuel 181:729–40.
  • Yilmaz, N., and A. B. Donaldson. 2005. Examination of causes of wetstacking in diesel engines. SAE Technical Papers:2005-01-3138.
  • Yilmaz, N., A. B. Donaldson. 2006. Experimental and computational investigation of PAH production in a diesel engine as a function of load. SAE Technical Paper. 1:1977.
  • Yilmaz, N., and A. B. Donaldson. 2007. Evidence of PAH production under lean combustion conditions. Fuel 86(15):2377–82.
  • Zhang, Z., Y. Li, X. Zhang, H. Zhang, and L. Wang. 2021. Review of hazardous materials in condensable particulate matter. Fuel Processing Technology 220:106892. doi:10.1016/j.fuproc.2021.106892
  • Zheng, M., M. C. Mulenga, G. T. Reader, M. Wang, D. S. Ting, and J. Tjong. 2008. Biodiesel engine performance and emissions in low temperature combustion. Fuel 87:714–22.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.