148
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effect of solvent extraction on the composition of coal tar residues and their pyrolysis characteristics

, , , , , & show all
Pages 9204-9216 | Received 31 May 2022, Accepted 21 Sep 2022, Published online: 05 Oct 2022

References

  • Al-Rumaihi, A., P. Parthasarathy, A. Fernandez, T. Al-Ansari, H. R. Mackey, R. Rodriguez, G. Mazza, and G. McKay. 2021. Thermal degradation characteristics and kinetic study of camel manure pyrolysis. Journal of Environmental Chemical Engineering 9(5):106071. doi:10.1016/j.jece.2021.106071.
  • Alayont, Ş., D. B. Kayan, H. Durak, E. K. Alayont, and S. Genel. 2022. The role of acidic, alkaline and hydrothermal pretreatment on pyrolysis of wild mustard (Sinapis arvensis) on the properties of bio-oil and bio-char. Bioresource Technology Reports 17:100980. doi:10.1016/j.biteb.2022.100980.
  • Aysu, T., and H. Durak. 2015. Thermochemical conversion of datura stramonium L. By supercritical liquefaction and pyrolysis processes. The Journal of Supercritical Fluids 102:98–114. doi:10.1016/j.supflu.2015.04.008.
  • Baldán, Y., A. Fernandez, A. R. Urrutia, M. P. Fabani, R. Rodriguez, and G. Mazza. 2020. Non-Isothermal drying of bio-wastes: kinetic analysis and determination of effective moisture diffusivity. Journal of Environmental Management 262:110348. doi:10.1016/j.jenvman.2020.110348.
  • Cao, R., R. Zhou, Y. Liu, D. Ma, J. Wang, Y. Guan, Q. Yao, and M. Sun. 2022. Research on the pyrolysis characteristics and mechanisms of waste printed circuit boards at fast and slow heating rates. Waste Management 149:134–45. doi:10.1016/j.wasman.2022.06.008.
  • Cheng, J., F. Zhou, T. Si, J. Zhou, and K. Cen. 2018. Mechanical strength and combustion properties of biomass pellets prepared with coal tar residue as a binder. Fuel Processing Technology 179:229–37. doi:10.1016/j.fuproc.2018.07.011.
  • Fang, P., Z. Gong, Z. Wang, Z. Wang, and F. Meng. 2019. Study on combustion and emission characteristics of microalgae and its extraction residue with TG-MS. Renewable Energy 140:884–94. doi:10.1016/j.renene.2019.03.114.
  • Fernandez, A., P. Sette, M. Echegaray, J. Soria, D. Salvatori, G. Mazza, and R. Rodriguez. 2022. Clean recovery of phenolic compounds, pyro-gasification thermokinetics, and bioenergy potential of spent agro-industrial bio-wastes. Biomass Conversion and Biorefinery. doi:10.1007/s13399-021-02197-z.
  • He, C., X. Min, H. Zheng, Y. Fan, Q. Yao, D. Zhang, X. Tang, C. Wan, M. Sun, X. Ma, et al. 2017. Study on the volatiles and kinetic of in-situ catalytic pyrolysis of swelling low-rank coal. Energy & Fuels 31(12):13558–71. doi:10.1021/acs.energyfuels.7b02952.
  • Hu, J., J. Gan, J. Li, Y. Luo, G. Wang, L. Wu, and Y. Gong. 2017. Extraction of crude oil from petrochemical sludge: Characterization of products using thermogravimetric analysis. Fuel 188:166–72. doi:10.1016/j.fuel.2016.09.068.
  • Liao, X., L. Wang, J. Zhu, P. Chu, Q. Liu, and T. Yang. 2021. Experimental study on the wettability of tectonic soft coal in Huaibei mining area, China. Energy & Fuels 35(8):6585–99. doi:10.1021/acs.energyfuels.0c04329.
  • Lin, X., G. Jiang, and Y. Wang. 2017. Hansen solubility parameters of coal tar-derived typical PAHs using turbidimetric titration and an extended Hansen approach. Journal of Chemical & Engineering Data 62(3):954–60. doi:10.1021/acs.jced.6b00740.
  • Liu, Y., and B. Shi. 2009. Interaction parameter method for investigating BTEX extraction using the hollow-fiber microporous membrane liquid/liquid extraction technique. Chemical Engineering & Technology 32(6):926–31. doi:10.1002/ceat.200800519.
  • Ma, Y., W. Su, Q. Wang, X. Huang, and J. Yuan. 2014. Discharge and disposal of coal gasification methanol production residue and distribution characteristics of PAHs in it. Advanced Materials Research 878:213–18. www.scientific.net/AMR.878.213.
  • Ma, Y., H. Wang, W. Mo, X. Zhang, X. Fan, J. Ma, F. Ma, and X. Wei. 2021. Effect of swelling by organic solvent on structure, pyrolysis, and methanol extraction performance of Hefeng bituminous coal. ACS Omega 6(23):14765–73. doi:10.1021/acsomega.0c06105.
  • Mo, W., X. He, Y. Ma, J. Ma, Y. Ma, F. Ma, X. Fan, and X. Wei. 2020. Effect of swelling with ionic liquid on the molecular structure and pyrolysis behavior of Hefeng sub-bituminous coal. Energy & Fuels 34(12):16099–108. doi:10.1021/acs.energyfuels.0c03127.
  • Niu, Z., Y. Wang, J. Shen, G. Liu, Y. Niu, Q. Sheng, R. Li, J. Du, Z. Yang, and Q. Xu. 2017. Solubility of a coal tar pitch and distribution of polycyclic aromatic hydrocarbons in soluble portion. Journal of China Coal Society 42(5):1311–18. doi:10.13225/j/cnki.jccs.2016.0990.
  • Paini, J., V. Benedetti, G. Ferrentino, M. Baratieri, and F. Patuzzi. 2021. Thermochemical conversion of apple seeds before and after supercritical CO2 extraction: an assessment through evolved gas analysis. Biomass Conversion and Biorefinery 11(2):473–88. doi:10.1007/s13399-020-00858-z.
  • Parthasarathy, P., A. Fernandez, T. Al-Ansari, H. R. Mackey, R. Rodriguez, and G. McKay. 2021. Thermal degradation characteristics and gasification kinetics of camel manure using thermogravimetric analysis. Journal of Environmental Management 287:112345. doi:10.1016/j.jenvman.2021.112345.
  • Qiao, L., C. Deng, F. Dai, and Y. Fan. 2019. Experimental study on a metal-chelating agent inhibiting spontaneous combustion of coal. Energy & Fuels 33(9):9232–40. doi:10.1021/acs.energyfuels.9b01775.
  • Reza, M. T., J. Andert, B. Wirth, D. Busch, J. Pielert, J. G. Lynam, and J. Mumme. 2014. Hydrothermal carbonization of biomass for energy and crop production. Applied Bioenergy 1(1):11–29. doi:10.2478/apbi-2014-0001.
  • Saffe, A., A. Fernandez, M. Echegaray, G. Mazza, and R. Rodriguez. 2019. Pyrolysis kinetics of regional agro-industrial wastes using isoconversional methods. Biofuels 10(2):245–57. doi:10.1080/17597269.2017.1316144.
  • Sharma, D. K., H. Dhawan, T. Morgan, and M. Crocker. 2019. Py-GCMS studies of Indian coals and their solvent extracted products. Fuel 256:115981. doi:10.1016/j.fuel.2019.115981.
  • Shi, D., X. Wei, X. Fan, Z. Zong, B. Chen, Y. Zhao, Y. Wang, and J. Cao. 2013. Characterizations of the extracts from geting bituminous coal by spectrometries. Energy & Fuels 27(7):3709–17. doi:10.1021/ef4004686.
  • Shi, X., Y. Wu, J. Zhang, L. Ding, C. Wang, X. Lan, and J. Gao. 2021. Comparison of pyrolysis behavior between pure coal and mixture of coal/cao. Journal of Analytical and Applied Pyrolysis 159:105311. doi:10.1016/j.jaap.2021.105311.
  • Si, T., J. Cheng, F. Zhou, J. Zhou, and K. Cen. 2017. Control of pollutants in the combustion of biomass pellets prepared with coal tar residue as a binder. Fuel 208:439–46. doi:10.1016/j.fuel.2017.07.051.
  • Song, Y., Q. Ma, and W. He. 2017. Co-Pyrolysis properties and product composition of low-rank coal and heavy oil. Energy & Fuels 31(1):217–23. doi:10.1021/acs.energyfuels.6b02106.
  • Sun, M., M. Ma, B. Lv, Q. Yao, J. Gao, R. Wang, Y. Zhang, and X. Ma. 2019. Pyrolysis characteristics of ethanol swelling Shendong coal and the composition distribution of its coal tar. Journal of Analytical and Applied Pyrolysis 138:94–102. doi:10.1016/j.jaap.2018.12.012.
  • Torres-Sciancalepore, R., A. Fernandez, D. Asensio, M. Riveros, M. P. Fabani, G. Fouga, R. Rodriguez, and G. Mazza. 2022. Kinetic and thermodynamic comparative study of quince bio-waste slow pyrolysis before and after sustainable recovery of pectin compounds. Energy Conversion and Management 252:115076. doi:10.1016/j.enconman.2021.115076.
  • Wang, X., Y. Niu, G. Liu, and J. Shen. 2015. Research progress of coal tar residue treatment technology. Chemical Industry and Engineering Progress 34(7):2016–22. doi:10.16085/j.issn.1000-6613.2015.07.035.
  • Wang, X., J. Shen, Y. Niu, Q. Sheng, G. Liu, and Y. Wang. 2016. Solvent extracting coal gasification tar residue and the extracts characterization. Journal of Cleaner Production 133:965–70. doi:10.1016/j.jclepro.2016.06.060.
  • Wang, C., and F. Zeng. 2020. Molecular structure characterization of CS2 –NMP extract and residue for Malan bituminous coal via solid-state 13 C NMR, FTIR, XPS, XRD, and CAMD techniques. Energy & Fuels 34(10):12142–57. doi:10.1021/acs.energyfuels.0c01877.
  • Xu, Y., Q. Fu, Y. Hong, Y. Zhang, L. Wang, K. Bei, I.-M. Chou, H. Hu, and Z. Pan. 2020. Effects of vitrinite in low-rank coal on the structure and combustion reactivity of pyrolysis chars. ACS Omega 5(28):17314–23. doi:10.1021/acsomega.0c01542.
  • Zhang, L., Z. Li, Y. Yang, Y. Zhou, J. Li, L. Si, and B. Kong. 2016. Research on the Composition and Distribution of Organic Sulfur in Coal. Molecules 21(5):630. doi:10.3390/molecules21050630.
  • Zhang, Y., C. Yang, Y. Li, Y. Huang, J. Zhang, Y. Zhang, and Q. Li. 2019. Ultrasonic extraction and oxidation characteristics of functional groups during coal spontaneous combustion. Fuel 242:287–94. doi:10.1016/j.fuel.2019.01.043.
  • Zhang, A., Z. Yu, P. Guo, H. Ren, Y. Yang, and M. Qi. 2021. Characteristics and kinetics of pyrolysis of municipal solid waste. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 0(0):1–13. doi:10.1080/15567036.2021.1960652.
  • Zhang, S., F. Zhu, C. Bai, L. Wen, and C. Zou. 2013. Thermal behavior and kinetics of the pyrolysis of the coal used in the COREX process. Journal of Analytical and Applied Pyrolysis 104:660–66. doi:10.1016/j.jaap.2013.04.014.
  • Zhao, Y., L. Liu, P. Qiu, X. Xie, X. Chen, D. Lin, and S. Sun. 2017. Impacts of chemical fractionation on Zhundong coal’s chemical structure and pyrolysis reactivity. Fuel Processing Technology 155:144–52. doi:10.1016/j.fuproc.2016.05.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.