209
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Study on differences in the enzyme hydrolysis induced from lignins from diverse types of lignocellulosic biomass

, &
Pages 9293-9309 | Received 10 Nov 2021, Accepted 20 Jul 2022, Published online: 05 Oct 2022

References

  • Bansal, P., M. Hall, M. J. Realff, J. H. Lee, and A. S. Bommarius. 2009. Modeling cellulase kinetics on lignocellulosic substrates. Biotechnology Advances 27:833–48.
  • Bin, Y., and C. Hongzhang. 2010. Effect of the ash on enzymatic hydrolysis of steam-exploded rice straw. Bioresource Technology 101:9114–19.
  • Björkman, A. 1956. Studies on finely divided wood. Part 1. Extraction of lignin with neutral solvents. Svensk Papperstidn 59:477–85.
  • Chundawat, S. P. S., B. Venkatesh, and B. E. Dale. 2007. Effect of particle size based separation of milled corn stover on afex pretreatment and enzymatic digestibility. Biotechnology and Bioengineering 96 (2):219–31. doi:10.1002/bit.21132.
  • Davison, B. H., S. R. Drescher, G. A. Tuskan, M. F. Davis, and N. P. Nghiem. 2006. Variation of s/g ratio and lignin content in a populus family influences the release of xylose by dilute acid hydrolysis. Applied Biochemistry and Biotechnology 130:427–35.
  • Dos Santos, A. C., E. Ximenes, Y. Kim, Y. Kim, and M. R. Ladisch. 2019. Lignin-enzyme interactions in the hydrolysis of lignocellulosic biomass. Trends in Biotechnology 37:518–31.
  • Du, B.-Y., X. Fan, Z. Cao, and X.-L. GUO. 2010. Applications and outlooks of quartz crystal microbalance in studies of polymer thin films. Chinese Journal of Analytical Chemistry 38 (5):752–59. doi:10.3724/SP.J.1096.2010.00752.
  • Guo, F., W. Shi, W. Sun, X. Li, F. Wang, J. Zhao, and Y. Qu. 2014. Differences in the adsorption of enzymes onto lignins from diverse types of lignocellulosic biomass and the underlying mechanism. Biotechnology for Biofuels 7 (1):38. doi:10.1186/1754-6834-7-38.
  • Hoeger, I. C., I. Filpponen, R. Martin-Sampedro, L. S. Johansson, M. Osterberg, J. Laine, S. Kelley, and O. J. Rojas. 2012. Bicomponent lignocellulose thin films to study the role of surface lignin in cellulolytic reactions. Biomacromolecules 13:3228–40.
  • Jeoh, T., M. J. Cardona, N. Karuna, A. R. Mudinoor, and J. Nill. 2017. Mechanistic kinetic models of enzymatic cellulose hydrolysis—a review. Biotechnology and Bioengineering 114:1369–85.
  • Jiang, C., T. Cao, W. Wu, J. Song, and Y. Jin. 2017. Novel approach to prepare ultrathin lignocellulosic film for monitoring enzymatic hydrolysis process by quartz crystal microbalance. ACS Sustainable Chemistry & Engineering 5:3837–44.
  • Jiang, C., T. Y. Cao, W. J. Wu, J. Song, and Y. Jin. 2017. Novel approach to prepare ultrathin lignocellulosic film for monitoring enzymatic hydrolysis process by quartz crystal microbalance. ACS Sustainable Chemistry & Engineering 5 (5):3837–44. doi:10.1021/acssuschemeng.6b02884.
  • Josefsson, P., G. Henriksson, and L. Wågberg. 2008. The physical action of cellulases revealed by a quartz crystal microbalance study using ultrathin cellulose films and pure cellulases. Biomacromolecules 9 (1):249. doi:10.1021/bm700980b.
  • Jung, W., D. Savithri, R. Sharma-Shivappa, and P. Kolar. 2019. Effect of sodium hydroxide pretreatment on lignin monomeric components of miscanthus × giganteus and enzymatic hydrolysis. Waste and Biomass Valorization 11 (11):5891–900. doi:10.1007/s12649-019-00859-8.
  • Karimi, K., and M. J. Taherzadeh. 2016. A critical review of analytical methods in pretreatment of lignocelluloses: Composition, imaging, and crystallinity. Bioresource Technology 200:1008–18.
  • Kim, D. 2018. Physico-chemical conversion of lignocellulose: Inhibitor effects and detoxification strategies: A mini review. Molecules 23:21.
  • Koo, B., J. Jo, and S.-M. Cho. 2020. Drying effect on enzymatic hydrolysis of cellulose associated with porosity and crystallinity. Applied Sciences-Basel 10 (16):5545. doi:10.3390/app10165545.
  • Ko, J. K., E. Ximenes, Y. Kim, and M. R. Ladisch. 2015. Adsorption of enzyme onto lignins of liquid hot water pretreated hardwoods. Biotechnology & Bioengineering 112 (3):447–56. doi:10.1002/bit.25359.
  • Kumagai, A., S. H. Lee, and T. Endo. 2013. Thin film of lignocellulosic nanofibrils with different chemical composition for qcm-d study. Biomacromolecules 14 (7):2420–26. doi:10.1021/bm400553s.
  • Kumagai, A., S. H. Lee, and T. J. B. Endo. 2016. Evaluation of the effect of hot‐compressed water treatment on enzymatic hydrolysis of lignocellulosic nanofibrils with different lignin content using a quartz crystal microbalance. Biotechnology and Bioengineering 113 (7):1441–47. doi:10.1002/bit.25911.
  • Liao, J. J., N. H. A. Latif, D. Trache, N. Brosse, and M. H. Hussin. 2020. Current advancement on the isolation, characterization and application of lignin. International Journal of Biological Macromolecules 162:985–1024. doi: 10.1016/j.ijbiomac.2020.06.168.
  • Li, X., M. Li, Y. Pu, A. J. Ragauskas, A. S. Klett, M. Thies, and Y. Zheng. 2018. Inhibitory effects of lignin on enzymatic hydrolysis: The role of lignin chemistry and molecular weight. Renewable Energy 123:664–74.
  • Li, P., Y. Liu, J. Lua, R. Yang, H. Li, and H. Wang. 2016. Structural characterization and effect on enzymatic hydrolysis of milled wood lignin isolated from reed straw and corn stover pretreated with liquid hot water. Bioresources 11:8777–90.
  • Ling, Z., S. Chen, X. Zhang, and F. Xu. 2017. Exploring crystalline-structural variations of cellulose during alkaline pretreatment for enhanced enzymatic hydrolysis. Bioresource Technology 224:611–17.
  • Lin, X. L., X. Q. Qiu, L. Yuan, Z. Li, H. Lou, M. Zhou, and D. Yang. 2015. Lignin-based polyoxyethylene ether enhanced enzymatic hydrolysis of lignocelluloses by dispersing cellulase aggregates. Bioresource Technology 185:165–70.
  • Lin, Y., and S. Tanaka. 2006. Ethanol fermentation from biomass resources: Current state and prospects. Applied Microbiology and Biotechnology 69:627–42.
  • Lin, X., L. Wu, S. Huang, Y. Qin, X. Qiu, H. Lou. 2019. Effect of lignin-based amphiphilic polymers on the cellulase adsorption and enzymatic hydrolysis kinetics of cellulose. Carbohydrate Polymers 207:52–58.
  • Li, M., Y. Pu, and A. J. Ragauskas. 2016. Current understanding of the correlation of lignin structure with biomass recalcitrance. Frontiers in Chemistry 4:45.
  • Li, X., and Y. Zheng. 2017. Lignin-enzyme interaction: Mechanism, mitigation approach, modeling, and research prospects. Biotechnology Advances 35 (4):466–89. doi:10.1016/j.biotechadv.2017.03.010.
  • Lundquist, K. 1992. Proton (1h) NMR spectroscopy. Berlin Heidelberg: Springer.
  • Martin-Sampedro, R., J. L. Rahikainen, L.-S. Johansson, K. Marjamaa, J. Laine, K. Kruus, and O. J. Rojas. 2013. Preferential adsorption and activity of monocomponent cellulases on lignocellulose thin films with varying lignin content. Biomacromolecules 14 (4):1231–39. doi:10.1021/bm400230s.
  • Myat, L., and G.-H. Ryu. 2016. Pretreatments and factors affecting saccharification and fermentation for lignocellulosic ethanol production. Cellulose Chemistry and Technology 50:177–88.
  • Putro, J. N., F. E. Soetaredjo, S.-Y. Lin, S. Y. Lin, Y. H. Ju, and S. Ismadji. 2016. Pretreatment and conversion of lignocellulose biomass into valuable chemicals. RSC Advances 6:46834–52.
  • Qin, L., W.-C. Li, L. Liu, J. Q. Zhu, X. Li, B. Z. Li, and Y. J. Yuan. 2016. Inhibition of lignin-derived phenolic compounds to cellulase. Biotechnology for Biofuels 9(1):70.
  • Rahikainen, J. L., R. Martin-Sampedro, H. Heikkinen, S. Rovio, K. Marjamaa, T. Tamminen, O. J. Rojas, and K. Kruus. 2013. Inhibitory effect of lignin during cellulose bioconversion: The effect of lignin chemistry on non-productive enzyme adsorption. Bioresource Technology 133:270–78. doi: 10.1016/j.biortech.2013.01.075.
  • Roadhouse, F. E., and D. J. B. J. Macdougall. 1956. A study of the nature of plant lignin by means of alkaline nitrobenzene oxidation. The Biochemical Journal 63 (1):33–39. doi:10.1042/bj0630033.
  • Robak, K., and M. Balcerek. 2020. Current state-of-the-art in ethanol production from lignocellulosic feedstocks. Microbiological Research 240:126534.
  • Sanchez, O. J., and C. A. Cardona. 2008. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technology 99 (13):5270–95. doi:10.1016/j.biortech.2007.11.013.
  • Scully, S. M., and J. Orlygsson. 2015. Recent advances in second generation ethanol production by thermophilic bacteria. Energies 8 (1):1–30. doi:10.3390/en8010001.
  • Shi, Z., G. Xu, J. Deng, M. Dong, V. Murugadoss, C. Liu, Q. Shao, S. Wu, and Z. Guo. 2019. Structural characterization of lignin from D. sinicus by FTIR and NMR techniques. Green Chemistry Letters and Reviews 12:235–43.
  • Sluiter, A., B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, and D. L. Crocker. 2008. Determination of structural carbohydrates and lignin in biomass. NREL Report No. TP−510−42618, National Renewable Energy Laboratory.
  • Suchy, M., M. B. Linder, T. Tammelin, J. M. Campbell, T. Vuorinen, and E. Kontturi. 2011. Quantitative assessment of the enzymatic degradation of amorphous cellulose by using a quartz crystal microbalance with dissipation monitoring. Langmuir the Acs Journal of Surfaces & Colloids 27 (14):8819. doi:10.1021/la2014418.
  • Tan, L., W. Sun, X. Li, J. Zhao, Y. Qu, Y. M. Choo, and S. K. Loh. 2015. Bisulfite pretreatment changes the structure and properties of oil palm empty fruit bunch to improve enzymatic hydrolysis and bioethanol production. Biotechnology Journal 10 (6):915–25. doi:10.1002/biot.201400733.
  • Toor, M., S. S. Kumar, S. K. Malyan, N. R. Bishnoi, T. Mathimani, K. Rajendran, and A. Pugazhendhi. 2020. An overview on bioethanol production from lignocellulosic feedstocks. Chemosphere 242:125080–92. doi: 10.1016/j.chemosphere.2019.125080.
  • Turon, X., O. J. Rojas, and R. S. Deinhammer. 2008. Enzymatic kinetics of cellulose hydrolysis: A qcm-d study. Langmuir the Acs Journal of Surfaces & Colloids 24:3880–87.
  • Wang, Q. Q., Z. He, Z. Zhu, Y.-H.-P. Zhang, Y. Ni, X. L. Luo, and J. Y. Zhu. 2012. Evaluations of cellulose accessibilities of lignocelluloses by solute exclusion and protein adsorption techniques. Biotechnology and Bioengineering 109 (2):381–89. doi:10.1002/bit.23330.
  • Wang, Y., L. Leng, M. K. Islam, F. Liu, C. S. K. Lin, and S.-Y. Leu. 2019. Substrate-related factors affecting cellulosome-induced hydrolysis for lignocellulose valorization. International Journal of Molecular Sciences 20 (13):3354. doi:10.3390/ijms20133354.
  • Wu, W. J., Z. G. Wang, Y. C. Jin, Y. Matsumoto, and H. Zhai. 2012. Isolation of lignin from rice straw based on LiCl/dmso dissolution. Proceedings of the 4th International Conference on Pulping, Papermaking and Biotechnology (ICPPB’ 12), Nanjing, Peoples R China, F: Nanjing Forestry Univ. November 07-09.
  • Wu, W., Z. Wang, Y. Jin, Y. Matsumoto, and H. Zhai. 2014. Isolation of cellulolytic enzyme lignin from rice straw enhanced by LiCl/dmso dissolution and regeneration. Bioresources 9 (3):4382–91. doi:10.15376/biores.9.3.4382-4391.
  • Xu, G., Z. Shi, Y. Zhao, J. Deng, M. Dong, C. Liu, V. Murugadoss, X. Mai, and Z. Guo. 2019. Structural characterization of lignin and its carbohydrate complexes isolated from bamboo (dendrocalamus sinicus). International Journal of Biological Macromolecules 126:376–84. doi: 10.1016/j.ijbiomac.2018.12.234.
  • Xu, C., J. Zhang, Y. Zhang, Y. Guo, H. Xu, C. Liang, Z. Wang, and J. Xu. 2019. Lignin prepared from different alkaline pretreated sugarcane bagasse and its effect on enzymatic hydrolysis. International Journal of Biological Macromolecules 141:484–92. doi: 10.1016/j.ijbiomac.2019.08.263.
  • Yang, Q., and X. Pan. 2016. Correlation between lignin physicochemical properties and inhibition to enzymatic hydrolysis of cellulose. Biotechnology and Bioengineering 113:1213–24.
  • Ying, W. J., Y. Xu, and J. H. Zhang. 2021. Effect of sulfuric acid on production of xylooligosaccharides and monosaccharides from hydrogen peroxide-acetic acid-pretreated poplar. Bioresource Technology 321:124472. doi: 10.1016/j.biortech.2020.124472.
  • Yoo, C. G., A. Dumitrache, W. Muchero, J. Natzke, H. Akinosho, M. Li, R. W. Sykes, S. D. Brown, B. Davison, and G. A. Tuskan. 2017. Significance of lignin s/g ratio in biomass recalcitrance of populus trichocarpa variants for bioethanol production. ACS Sustainable Chemistry & Engineering 6:2162–68.
  • Yoo, C. G., M. Li, X. Z. Meng, Y. Pu, and A. J. Ragauskas. 2017. Effects of organosolv and ammonia pretreatments on lignin properties and its inhibition for enzymatic hydrolysis. Green Chemistry 19:2006–16.
  • Yu, Z., H. Jameel, H.-M. Chang, R. Philips, and S. Park. 2012. Evaluation of the factors affecting avicel reactivity using multi-stage enzymatic hydrolysis. Biotechnology and Bioengineering 109:1131–39.
  • Zhang, Y., T. Culhaoglu, B. Pollet, C. Melin, D. Denoue, Y. Barriere, S. Baumberger, and V. Méchin. 2011. Impact of lignin structure and cell wall reticulation on maize cell wall degradability. Journal of Agricultural and Food Chemistry 59:10129–35.
  • Zhang, Q., G. Wan, M. Li, H. Jiang, S. Wang, and D. Min. 2020. Impact of bagasse lignin-carbohydrate complexes structural changes on cellulase adsorption behavior. International Journal of Biological Macromolecules 162:236–45. doi: 10.1016/j.ijbiomac.2020.06.084.
  • Zhang, H., S. Wu, and J. Xie. 2017. Evaluation of the effects of isolated lignin on enzymatic hydrolysis of cellulose. Enzyme and Microbial Technology 101:44–50. doi: 10.1016/j.enzmictec.2017.03.001.
  • Zhao, X. Q., L. H. Zi, F. W. Bai, H. L. Lin, X. M. Hao, G. J. Yue, and N. W. Ho. 2012. Bioethanol from lignocellulosic biomass. Advances in Biochemical Engineering Biotechnology 128:25.
  • Zoghlami, A., and G. Paes. 2019. Lignocellulosic biomass: Understanding recalcitrance and predicting hydrolysis. Frontiers in Chemistry 7. doi: 10.3389/fchem.2019.00874.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.