1,177
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Mechanical properties of rice husk ash, an environmental pollutant, based composites: A step towards sustainable hybrid composites

, ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 9584-9602 | Received 17 May 2022, Accepted 17 Aug 2022, Published online: 12 Oct 2022

References

  • Auradi, V., G. L. Rajesh, and S. A. Kori. 2014. Preparation and evaluation of mechanical properties of 6061al–b4cp composites produced via two-stage melt stirring. Materials and Manufacturing Process 29 (2):194–200. doi:10.1080/10426914.2013.872265.
  • Bahrami, A., M. I. Pech-Canul, C. A. Gutierrez, and N. Soltani. 2015a. Effect of rice-husk ash on properties of laminated and functionally graded Al/SiC composites by one-step pressureless infiltration. Journal of Alloys and Compounds 644:256–66. doi:10.1016/j.jallcom.2015.04.194.
  • Bahrami, A., M. I. Pech-Canul, C. A. Gutiérrez, and N. Soltani. 2015b. Wetting and reaction characteristics of crystalline and amorphous SiO2 derived rice-husk ash and SiO2/SiC substrates with Al–Si–Mg alloys. Applied Surface Science 357 Part A.:1104–13. doi:10.1016/j.apsusc.2015.09.137.
  • Bahrami, A., U. Simon, N. Soltani, S. Zavareh, J. Schmidt, M. I. Pech-Canul, and A. Gurlo. 2016b. Ecofabrication of hierarchical porous silica monoliths by ice- templating of Rice Husk Ash. Green Chemistry 19 (1):188–95. doi:10.1039/C6GC02153K.
  • Bahrami, A., N. Soltani, M. I. Pech-Canul, and C. A. Gutiérrez. 2016a. Development of metal-matrix composites from industrial/agricultural waste materials and their derivatives. Critical Reviews in Environmental Science and Technology 46 (2):143–208. doi:10.1080/10643389.2015.1077067.
  • Bains, P. S., S. S. Sidhu, and H. S. Payal. 2016. Fabrication and machining of metal matrix composites: A review. Materials and Manufacturing Process 31 (5):553–73. doi:10.1080/10426914.2015.1025976.
  • Bharath, V., M. Nagaral, V. Auradi, and S. A. Kori. 2006. Preparation of 6061al–al2o3 MMC’s by stir casting and evaluation of mechanical and wear properties. Tribology International 39 (6):213–20. doi:10.1016/j.mspro.2014.07.151.
  • Bhushan, R. K. 2013. Optimisation of cutting parameters for minimising power consumption and maximiing tool life during machining of Al alloy SiC particle composites. Journal of Cleaner Production 39:242–54. doi:10.1016/j.jclepro.2012.08.008.
  • Brubaker, S. 1967. Trends in the world aluminium industry, p. 260. Baltimore, MD, USA: The John Hopkins Press for Resources for the Future.
  • Carcea, I., and D. Nedelcu. 2012. Technology for obtaining composite material with metallic matrix and Si-C particles. Materials and Manufacturing Process 27 (6):694–701. doi:10.1080/10426914.2011.602786.
  • Das, S., T. K. Dan, S. V. Prasad, and P. K. Rohatagi. 1986. Aluminium alloy-rice husk ash particle composites. Journal of Materials Science Letters 1986 (5):562–64.
  • Deshmukh, P., J. Bhatt, D. Peshwe, and S. Pathak. 2012. Development and characterisation of Al based MMC by using RHA and metallurgical grade SiO2 with varying percentage of Mg. Nano Trends: A Journal of Nanotechnology and Its Applications 12 (2):1–10.
  • Deshmukh, P., and S. Pathak. 2012. Influence of varying SiO2 % on the mechanical properties of Al based MMC. Transactions of the Indian Institute of Metals 65 (6):741–45. doi:10.1007/s12666-012-0196-8.
  • Foo, K., and B. Hameed. 2009. Utilisation of rice husk ash as novel adsorbent: A judiciousrecycling of the colloidal agricultural waste. Current Opinion in Colloid & Interface Science 152:39–47. doi:10.1016/j.cis.2009.09.005.
  • Gaurav, G. K., T. Mehmood, L. Cheng, J. J. Klemeš, and D. K. Shrivastava. 2020. Water hyacinth as a biomass: A review. Journal of Cleaner Production 277:122214. doi:10.1016/j.jclepro.2020.122214.
  • Ghandvar, H., S. Farahany, and J. Idris. 2015. Wettability enhancement of SiCp in cast A356/SiCp composite using semisolid process. Materials and Manufacturing Process 30 (12):1442–49. doi:10.1080/10426914.2015.1004687.
  • Hall, D., and J. Scrase. 1998. Will biomass be the environmentally friendly fuel of thefuture? Biomass & Bioenergy 15 (4–5):357367. doi:10.1016/S0961-9534(98)00030-0.
  • Hamid, A.A., Ghosh, P.K., Jain, S.C., Ray, S.,The influence of porosity and particles content on dry sliding wear of cast in situ Al(Ti)-Al2O3(TiO2) composite, Wearthis link is disabled, 2008, 265(1–2), pp. 14–26
  • Hashim, J., L. Looney, and M. S. J. Hashmi. 1999. Metal matrix composites: Production by the stir casting method. Journal of Materials Processing Technology 92-93:1–7. doi:10.1016/S0924-0136(99)00118-1.
  • Heimann, R. B. 2010. Classic and advanced ceramics: From fundamentals to applications, p. 539. Germany: John Wiley & Sons.
  • Howell, G. J., and A. Ball. 1995. Dry sliding wear of particulate-reinforced aluminium alloys against automobile friction materials. Wear 181–183:379–90. doi:10.1016/0043-1648(95)90045-4.
  • Hu, Q., H. Zhao, and F. Li. 2016. Effects of manufacturing processes on microstructure and properties of Al/A356–B4C composites. Materials and Manufacturing Process 31 (10):1292–300. doi:10.1080/10426914.2016.1151049.
  • Kalaiselvan, K., N. Murugan, and S. Parameswaran. 2011. Production and characterisation of AA6061–B4C stir cast composite. Materials & Design 32 (7):4004–09. doi:10.1016/j.matdes.2011.03.018.
  • Kala, H., K. K. S. Mer, and S. Kumar. 2014. A review on mechanical and tribological behaviours of stir cast aluminium matrix composites. Procedia Materials Science (6), 1951–60. doi: 10.1016/j.mspro.2014.07.229.
  • Krishna, M. V., and A. M. Xavior. 2014. An investigation on the mechanical properties of hybrid metal matrix composites. Procedia Engineering 97:918–24. doi:10.1016/j.proeng.2014.12.367.
  • Kumar, A. H., R. Prasad, A. Srivastava, M. Vashista, and M. Z. Khan. 2018. Utilisation of industrial waste (Fly ash) in synthesis of copper-based surface composite through friction stir processing route for wear applications. Journal of Cleaner Production 196:460–68. doi:10.1016/j.jclepro.2018.06.029.
  • Mallik, S., and N. Ekere. 2013. Metal matrix composites as thermal management materialsfor automotive applications. In Engineered metal matrix composites: Forming methods, material properties and industrial applications, ed. L. Magagnin, p. 113126. New York, USA: Nova Science Publishers, Inc.
  • Manivannan, A., and R. Sasikumar. 2019. Exemplary encapsulate feeding in stir casting for quality composites. Materials and Manufacturing Process 34 (6):689–94. doi:10.1080/10426914.2019.1566962.
  • Parikh, V. K., V. J. Badheka, A. D. Badgujar, and N. D. Ghetiya. 2021. Fabrication and processing of aluminium alloy metal matrix composites. Materials and Manufacturing Process 36 (14):1604–17. doi:10.1080/10426914.2021.1914848.
  • Pech-Canul, M. I., and E. Aifantis. 2014. A revamped paradigm of composite materials:From ancient-to-modern concepts and applications. In F. Kongoli, (ed.), Sustainable Industrial Processing Summit/SHECHTMAN International Symposium, Montreal. QC, Canada, 449458.
  • Pech-Canul, M. I., and S. Aldez. 2015. Contemporary concepts and applications in the fieldof composites materials, SAMPE. Baltimore, MD: Society for the Advancement of Material and Process Engineering.
  • Ponnarengan, H., L. Kamaraj, S. R. Balachandran, and S. KatharBasha. 2020. Reusing exhausted alkaline battery powder as reinforcement in AA6061 composites and mechanical characterisation. Energy Sources, Part A: Recovery, Utilisation, and Environmental Effects 1–14. doi:10.1080/15567036.2020.1795308.
  • Prasad, D. S., and A. R. Krishna. 2010. Fabrication and characterisation of A356. 2-Rice husk ash composite using stir casting technique. International Journal of Engineering Science and Technology 2:7603–08.
  • Prasad, D. S., and A. R. Krishna. 2011. Production and mechanical properties of A356. 2/RHA composites. International Journal of Advanced Science and Technology 33:51–58.
  • PraveenKumar, B., and A. K. Birru. 2019. Strengthening of Al-4.5% Cu alloy with the addition of silicon carbide and bamboo leaf ash. International Journal of Structural Integrity 10 (2):149–61. doi:10.1108/IJSI-03-2018-0018.
  • Radhika, N., and R. Subramanian. 2013. Effect of Reinforcement on wear behaviour of aluminum hybrid composites. Tribology - Materials, Surfaces & Interfaces 7 (1):36–41. doi:10.1179/1751584X13Y.0000000025.
  • Rahman, M. H., and H. M. M. Rashed. 2014. Characterisation of silicon carbide reinforced aluminium matrix composites. Procedia Engineering 90:103–09. doi:10.1016/j.proeng.2014.11.821.
  • Rajmohan, T., K. Palanikumar, and S. Ranganathan. 2013. Evaluation of mechanical and wear properties of hybrid aluminium matrix composites. Transactions of Nonferrous Metals Society of China 23 (9):2509–17. doi:10.1016/S1003-6326(13)62762-4.
  • Ramesh, A., J. N. Prakash, S. S. Gowda, and A. S. Appaiah Sonnappa. 2009. Comparison of the mechanical properties of AL6061/Albite and AL6061/graphite metal matrix composites. Journal of Minerals and Materials Characterization and Engineering (JMMCE), USA (JMMCE), USA 8 (2):93–106.
  • Saravanakumar, A., P. Sasikumar, and S. Sivasankaran. 2014. Synthesis and mechanical behaviour of AA 6063-X wt% Al2O3- 1% Gr (X = 3, 6, 9 and 12 wt%) hybrid composites. Procedia Engineering 97:951–60. doi:10.1016/j.proeng.2014.12.371.
  • Sarkar, S., A. Bhirangi, J. Mathew, R. Oyyaravelu, P. Kuppan, and A. S. S. Balan. 2018. Fabrication characteristics and mechanical behaviour of Rice Husk Ash-silicon carbide reinforced Al-6061 alloy matrix hybrid composite. Materials Today: Proceedings 5 (5):12706–18. doi:10.1016/j.matpr.2018.02.254.
  • Soltani, N., A. Bahrami, M. I. Pech-Canul, and L. A. González. 2015. Review on the physicochemical treatments of rice husk for production of advanced materials. Chemical Engineering Journal 264:899–935. doi:10.1016/j.cej.2014.11.056.
  • Subramanian, C. 1992. Some considerations towards the design of a wear resistant aluminium alloy. Wear 155 (1):193–205. doi:10.1016/0043-1648(92)90118-R.
  • Suthar, J., and K. M. Patel. 2018. Processing issues, machining, and applications of aluminium metal matrix composites. Materials and Manufacturing Process 33 (5):499–527. doi:10.1080/10426914.2017.1401713.
  • Tham, L. M., M. Gupta, and L. Cheng. 2001. Effect of limited matrix reinforcement interfacial reaction on enhancing the mechanical properties of aluminium–silicon carbide composites. Acta Materialia 49 (16):3243–53. doi:10.1016/S1359-6454(01)00221-X.
  • Umanath, K., K. Palanikumar, and S. T. Selvamani. 2013. Analysis of dry sliding wear behaviour of al6061/sic/al2o3 hybrid metal matrix composites. Composites Part B: Engineering 53:159–68. doi:10.1016/j.compositesb.2013.04.051.
  • Vigneshwaran, S., M. Uthayakumar, and V. Arumugaprabu. 2019. Development and sustainability of industrial waste-based red mud hybrid composites. Journal of Cleaner Production 230:862–68. doi:10.1016/j.jclepro.2019.05.131.
  • Vlaev, L., I. Markovska, and L. Lyubchev. 2003. Non-Isothermal kinetics of pyrolysis of ricehusk. Thermochimica Acta 406 (1–2):17. doi:10.1016/S0040-6031(03)00222-3.
  • Wang, N., Z. Wang, and G. C. Weatherly. 1992. Formation of magnesium aluminate (spinel)in cast SiC particulate-reinforced Al(A356) metal matrix composites. Metallurgical Transactions A 23 (5):1423–30. doi:10.1007/BF02647325.
  • Wilson, S., and A. T. Alpas. 1996. Effect of temperature on the sliding wear performance of Al alloys and Al matrix composites. Wear 196 (1–2):270–78. doi:10.1016/0043-1648(96)06923-2.
  • Yu, S. Y., H. Ishii, K. Tohgo, Y. T. Cho, and D. Diao. 1997. Temperature dependence of sliding wear behaviour in SiC whisker or SiC particulate reinforced 6061 aluminum alloy composite. Wear 213 (1–2):21–28. doi:10.1016/S0043-1648(97)00207-X.
  • Yusoff, S. 2006. Renewable energy from palm oil – innovation on effective utilization of waste. Journal of Cleaner Production 14 (1):87–93. doi:10.1016/j.jclepro.2004.07.005.