155
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Significance of hydrodynamic cavitation to enhance reuse of secondary sedimentation tank effluent: a geometrical assessment

ORCID Icon, &
Pages 9310-9324 | Received 30 Jun 2022, Accepted 16 Sep 2022, Published online: 06 Oct 2022

References

  • Alfonso-Muniozguren, P., M. Hazzwan Bohari, A. Sicilia, C. Avignone-Rossa, M. Bussemaker, D. Saroj, and J. Lee. 2020. Tertiary treatment of real abattoir wastewater using combined acoustic cavitation and ozonation. Ultrasonics Sonochemistry 64 (January):104986. doi:10.1016/j.ultsonch.2020.104986.
  • Arabnejad, M. H., A. Amini, M. Farhat, and R. E. Bensow. 2020. Hydrodynamic mechanisms of aggressive collapse events in leading edge cavitation. Journal of Hydrodynamics 32 (1):6–19. doi:10.1007/s42241-020-0002-8.
  • Arola, K., B. Van der Bruggen, M. Mänttäri, and M. Kallioinen. 2019. Treatment options for nanofiltration and reverse osmosis concentrates from municipal wastewater treatment: A review. Critical Reviews in Environmental Science and Technology 49 (22):2049–116. doi:10.1080/10643389.2019.1594519.
  • Badmus, K. O., J. O. Tijani, E. Massima, and L. Petrik. 2018. Treatment of persistent organic pollutants in wastewater using hydrodynamic cavitation in synergy with advanced oxidation process. Environmental Science and Pollution Research 25 (8):7299–314. doi:10.1007/s11356-017-1171-z.
  • Badve, M., P. Gogate, A. Pandit, and L. Csoka. 2013. Hydrodynamic cavitation as a novel approach for wastewater treatment in wood finishing industry. Separation and Purification Technology 106:15–21. doi:10.1016/j.seppur.2012.12.029.
  • Baghele, N. S., A. K. Khambete, and R. A. Christian. 2022. Application of effective orifice jet length for treating SST effluent of STP by hydrodynamic cavitation. Environmental Technology (United Kingdom) 1–10. doi:10.1080/09593330.2022.2087047.
  • Bargole, S., S. George, and V. Kumar Saharan. 2019. Improved rate of transesterification reaction in biodiesel synthesis using hydrodynamic cavitating devices of high throat perimeter to flow area ratios. Chemical Engineering and Processing - Process Intensification 139 (December 2018):1–13. doi:10.1016/j.cep.2019.03.012.
  • Barik, A. J., and P. R. Gogate. 2016. Degradation of 4-chloro 2-aminophenol using a novel combined process based on hydrodynamic cavitation, UV photolysis and ozone. Ultrasonics Sonochemistry 30:70–78. doi:10.1016/j.ultsonch.2015.11.007.
  • Basiri Parsa, J., and S. A. Ebrahimzadeh Zonouzian. 2013. Optimization of a heterogeneous catalytic hydrodynamic cavitation reactor performance in decolorization of Rhodamine B: Application of scrap iron sheets. Ultrasonics Sonochemistry 20 (6):1442–49. doi:10.1016/j.ultsonch.2013.04.013.
  • Bhat, A. P., and P. R. Gogate. 2021. Cavitation-Based pre-Treatment of wastewater and waste sludge for improvement in the performance of biological processes: A review. Journal of Environmental Chemical Engineering 9 (2):104743. doi:10.1016/j.jece.2020.104743.
  • Boczkaj, G., M. Gągol, M. Klein, and A. Przyjazny. 2018. Effective method of treatment of effluents from production of bitumens under basic pH conditions using hydrodynamic cavitation aided by external oxidants. Ultrasonics Sonochemistry 40 (September 2017):969–79. doi:10.1016/j.ultsonch.2017.08.032.
  • Braeutigam, P., M. Franke, Z.-L. Wu, and B. Ondruschka. 2010. Role of different parameters in the optimization of hydrodynamic cavitation. Chemical Engineering & Technology 33 (6):932–40. doi:10.1002/ceat.201000021.
  • Burzio, E., F. Bersani, G. C. A. Caridi, R. Vesipa, L. Ridolfi, and C. Manes. 2020. Water disinfection by orifice-induced hydrodynamic cavitation. Ultrasonics Sonochemistry 60: June 2019 doi:10.1016/j.ultsonch.2019.104740.
  • Chakraborti, R. K., J. Kaur, and H. Kaur. 2019. Water shortage challenges and a way forward in India. Journal - American Water Works Association 111 (5):42–49. doi:10.1002/awwa.1289.
  • Collivignarelli, M. C., A. Abbà, I. Benigna, S. Sorlini, and V. Torretta. 2018. Overview of the main disinfection processes for wastewater and drinking water treatment plants. Sustainability (Switzerland) 10 (1):1–21. doi:10.3390/su10010086.
  • CPCB. March 2021. National Inventory of Sewage Treatment Plants March 2021. 183. https://cpcb.nic.in/openpdffile.php?id=UmVwb3J0RmlsZXMvMTIyOF8xNjE1MTk2MzIyX21lZGlhcGhvdG85NTY0LnBkZg==
  • Dhanke, P. B., and S. M. Wagh. 2020. Intensification of the degradation of acid RED-18 using hydrodynamic cavitation. Emerging Contaminants 6:20–32. doi:10.1016/j.emcon.2019.12.001.
  • Dong, Z. Y., K. Zhang, and R. H. Yao. 2019. Degradation of refractory pollutants by hydrodynamic cavitation: key parameters to degradation rates. Journal of Hydrodynamics 31 (4):848–56. doi:10.1007/s42241-018-0131-5.
  • Fedorov, K., K. Dinesh, X. Sun, R. Darvishi Cheshmeh Soltani, Z. Wang, S. Sonawane, and G. Boczkaj. 2022. Synergistic effects of hybrid advanced oxidation processes (AOPs) based on hydrodynamic cavitation phenomenon – a review. Chemical Engineering Journal 432: December 2021 doi:10.1016/j.cej.2021.134191.
  • Fedorov, K., X. Sun, and G. Boczkaj. 2021. Combination of hydrodynamic cavitation and SR-AOPs for simultaneous degradation of BTEX in water. Chemical Engineering Journal 417 (December 2020):128081. doi:10.1016/j.cej.2020.128081.
  • Fernandes, A., M. Gągol, P. Makoś, J. A. Khan, and G. Boczkaj. 2019. Integrated photocatalytic advanced oxidation system (TiO2/uv/o3/h2o2)for degradation of volatile organic compounds. Separation and Purification Technology 224 (February):1–14. doi:10.1016/j.seppur.2019.05.012.
  • Fernandes, A., P. Makoś, and G. Boczkaj. 2018. Treatment of bitumen post oxidative effluents by sulfate radicals based advanced oxidation processes (S-AOPs) under alkaline pH conditions. Journal of Cleaner Production 195:374–84. doi:10.1016/j.jclepro.2018.05.207.
  • Fernandes, A., P. Makoś, J. A. Khan, and G. Boczkaj. 2019. Pilot scale degradation study of 16 selected volatile organic compounds by hydroxyl and sulfate radical based advanced oxidation processes. Journal of Cleaner Production 208:54–64. doi:10.1016/j.jclepro.2018.10.081.
  • Gągol, M., E. Cako, K. Fedorov, R. D. C. Soltani, A. Przyjazny, and G. Boczkaj. 2020. Hydrodynamic cavitation based advanced oxidation processes: Studies on specific effects of inorganic acids on the degradation effectiveness of organic pollutants. Journal of Molecular Liquids 307: 113002. doi:10.1016/j.molliq.2020.113002.
  • Gągol, M., A. Przyjazny, and G. Boczkaj. 2018. Wastewater treatment by means of advanced oxidation processes based on cavitation – a review. Chemical Engineering Journal 338 (September 2017):599–627. doi:10.1016/j.cej.2018.01.049.
  • Giuseppe, M., L. Michela, and A. Gainni. 2020. A critical review of the current technologies in wastewater treatment plants by using hydrodynamic cavitation process: Principles and application. Journal of Environmental Health Science and Engineering. doi:10.1007/s40201-020-00444-5.
  • Innocenzi, V., and M. Prisciandaro. 2021. Technical feasibility of biodiesel production from virgin oil and waste cooking oil: comparison between traditional and innovative process based on hydrodynamic cavitation. Waste Management 122:15–25. doi:10.1016/j.wasman.2020.12.034.
  • Innocenzi, V., M. Prisciandaro, F. Tortora, and F. Vegliò. 2018. Optimization of hydrodynamic cavitation process of azo dye reduction in the presence of metal ions. Journal of Environmental Chemical Engineering 6 (6):6787–96. doi:10.1016/j.jece.2018.10.046.
  • Innocenzi, V., M. Prisciandaro, and F. Vegliò February 2020. Study of the effect of operative conditions on the decolourization of azo dye solutions by using hydrodynamic cavitation at the lab scale. The Canadian Journal of Chemical Engineering 98: 1980–88. doi:10.1002/cjce.23782.
  • Jiang, L., Y. Tu, X. Li, & H. Li (2018). Application of reverse osmosis in purifying drinking water. E3S Web of Conferences, 38. 10.1051/e3sconf/20183801037
  • Kesari, K. K., R. Soni, Q. M. S. Jamal, P. Tripathi, J. A. Lal, N. K. Jha, M. H. Siddiqui, P. Kumar, V. Tripathi, and J. Ruokolainen. 2021. Wastewater treatment and reuse: a review of its applications and health implications. Water, Air, and Soil Pollution 232 (5). doi: 10.1007/s11270-021-05154-8.
  • Kim, H., X. Sun, B. Koo, and J. Y. Yoon. 2019. Experimental investigation of sludge treatment using a rotor-stator type hydrodynamic cavitation reactor and an ultrasonic bath. Processes 7 (11). doi: 10.3390/pr7110790.
  • Kolhe, N. S., A. R. Gupta, and V. K. Rathod. 2017. Production and purification of biodiesel produced from used frying oil using hydrodynamic cavitation. Resource-Efficient Technologies 3 (2):198–203. doi:10.1016/j.reffit.2017.04.008.
  • Kookana, R. S., P. Drechsel, P. Jamwal, and J. Vanderzalm. 2020. Urbanisation and emerging economies: Issues and potential solutions for water and food security. The Science of the Total Environment 732:139057. doi:10.1016/j.scitotenv.2020.139057.
  • Kulkarni, B., R. V. Wanjule, and H. H. Shinde. 2018. Study on sewage quality from sewage treatment plant at Vashi, Navi Mumbai. Materials Today: Proceedings 5 (1):1859–63. doi:10.1016/j.matpr.2017.11.286.
  • Lee, I., Y. K. Oh, and J. I. Han. 2019. Design optimization of hydrodynamic cavitation for effectual lipid extraction from wet microalgae. Journal of Environmental Chemical Engineering 7 (2):102942. doi:10.1016/j.jece.2019.102942.
  • Li, X., D. Hasson, R. Semiat, and H. Shemer. 2019. Intermediate concentrate demineralization techniques for enhanced brackish water reverse osmosis water recovery – a review. Desalination 466 (May):24–35. doi:10.1016/j.desal.2019.05.004.
  • Mancuso, G., M. Langone, and G. Andreottola. 2017. A swirling jet-induced cavitation to increase activated sludge solubilisation and aerobic sludge biodegradability. Ultrasonics Sonochemistry 35:489–501. doi:10.1016/j.ultsonch.2016.11.006.
  • Mancuso, G., M. Langone, G. Andreottola, and L. Bruni. 2019. Effects of hydrodynamic cavitation, low-level thermal and low-level alkaline pre-treatments on sludge solubilisation. Ultrasonics Sonochemistry 59 (August):104750. doi:10.1016/j.ultsonch.2019.104750.
  • Mancuso, G., M. Langone, R. Di Maggio, A. Toscano, and G. Andreottola. 2022. Effect of hydrodynamic cavitation on flocs structure in sewage sludge to increase stabilization for efficient and safe reuse in agriculture. Bioremediation Journal 26 (1):41–52. doi:10.1080/10889868.2021.1900055.
  • Mancuso, G., M. Langone, M. Laezza, and G. Andreottola. 2016. Decolourization of Rhodamine B: A swirling jet-induced cavitation combined with NaOcl. Ultrasonics Sonochemistry 32:18–30. doi:10.1016/j.ultsonch.2016.01.040.
  • Maniakova, G., I. Salmerón, M. Aliste, M. Inmaculada Polo-López, I. Oller, S. Malato, and L. Rizzo. 2022. Solar photo-Fenton at circumneutral pH using Fe(III)-EDDS compared to ozonation for tertiary treatment of urban wastewater: Contaminants of emerging concern removal and toxicity assessment. Chemical Engineering Journal 431: June 2021 doi:10.1016/j.cej.2021.133474.
  • Ministry of Housing and Urban Affairs, Government of India. 2013. Manual on sewerage and sewage treatment systems - 2013-part a. Central Public Health & Environmental Engineering Organisation http://cpheeo.gov.in/cms/manual-on-sewerage-and-sewage-treatment.php.
  • Mukherjee, A., A. Mullick, R. Teja, P. Vadthya, A. Roy, and S. Moulik. 2020. Performance and energetic analysis of hydrodynamic cavitation and potential integration with existing advanced oxidation processes: A case study for real life greywater treatment. Ultrasonics Sonochemistry 66 (September 2019):105116. doi:10.1016/j.ultsonch.2020.105116.
  • Mukherjee, S., T. Sundberg, and B. Schütt. 2020. Assessment of water security in socially excluded water, sanitation and hygiene. Water 2030:1–36.
  • Patil, P. N., and P. R. Gogate. 2012. Degradation of methyl parathion using hydrodynamic cavitation: Effect of operating parameters and intensification using additives. Separation and Purification Technology 95:172–79. doi:10.1016/j.seppur.2012.04.019.
  • Patil, V. V., P. R. Gogate, A. P. Bhat, and P. K. Ghosh. 2020. Treatment of laundry wastewater containing residual surfactants using combined approaches based on ozone, catalyst and cavitation. Separation and Purification Technology 239:116594. doi:10.1016/j.seppur.2020.116594.
  • Prilly, S., I. Arum, and D. Harisuseno. 2019. Domestic wastewater contribution to water quality of brantas river at Dinoyo Urban Village, Malang City. J-Pai 10 (2):84–91. doi:10.21776/ub.jpal.2019.010.02.02.
  • Rajoriya, S., S. Bargole, S. George, and V. K. Saharan. 2018. Treatment of textile dyeing industry effluent using hydrodynamic cavitation in combination with advanced oxidation reagents. Journal of Hazardous Materials 344:1109–15. doi:10.1016/j.jhazmat.2017.12.005.
  • Randhavane, S. B. 2018. Comparing geometric parameters in treatment of pesticide effluent with hydrodynamic cavitation process. Environmental Engineering Research 24 (2):0–2. doi:10.4491/eer.2018.227.
  • Randhavane, S. B., and A. K. Khambete. 2018. Hydrodynamic cavitation: an approach to degrade chlorpyrifos pesticide from real effluent. KSCE Journal of Civil Engineering 22 (7):2219–25. doi:10.1007/s12205-017-2045-0.
  • Rayaroth, M. P., C. T. Aravindakumar, N. S. Shah, and G. Boczkaj. 2022. Advanced oxidation processes (AOPs) based wastewater treatment - unexpected nitration side reactions - a serious environmental issue: A review. Chemical Engineering Journal 430: October2021 doi:10.1016/j.cej.2021.133002.
  • Saxena, S., V. K. Saharan, and S. George. 2018. Enhanced synergistic degradation efficiency using hybrid hydrodynamic cavitation for treatment of tannery waste effluent. Journal of Cleaner Production 198:1406–21. doi:10.1016/j.jclepro.2018.07.135.
  • Singh, S., & S. Randhavane (2022). Hydrodynamic cavitation: its optimization and potential application in treatment of pigment industry wastewater. Materials Today: Proceedings, xxxx, 1–7. 10.1016/j.matpr.2022.01.261
  • Metcalf & EddyTchobanoglous, G., F. Burton, and H. D. Stensel. 2017. Wastewater engineering treatment disposal reuse. 4th. Boston: McGraw Hill Education.
  • Virdis, B., S. Freguia, R. A. Rozendal, K. Rabaey, Z. Yuan, and J. Keller. 2011. Microbial fuel cells. Treatise on Water Science 4:641–65. doi:10.1016/B978-0-444-53199-5.00098-1.
  • Wang, Y., A. Jia, Y. Wu, C. Wu, and L. Chen. 2015. Disinfection of bore well water with chlorine dioxide/sodium hypochlorite and hydrodynamic cavitation. Environmental Technology (United Kingdom) 36 (4):479–86. doi:10.1080/09593330.2014.952345.
  • Wastewater, T., and A. Plan. 2019. Surat municipal corporation reuse & recycle of treated wastewater action plan 2019. 1–11.
  • Wilkinson, R., and M. Bevir. 2018. The World Economic Forum. The Encyclopedia of Governance Sage Publications Ltd 671.
  • Zhang, K., Z. Y. Dong, and R. H. Yao. 2018. Pressure characteristics of hydrodynamic cavitation reactor due to the combination of Venturi tubes with multi-orifice plates. Journal of Hydrodynamics 30 (3):514–21. doi:10.1007/s42241-018-0056-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.