107
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An experimental investigation of using Ni-doped ZnO–ZrO2 nanoparticles as a new asphaltene deposition inhibitor in ultra low carbonate porous media

ORCID Icon & ORCID Icon
Pages 9429-9447 | Received 27 Oct 2021, Accepted 28 Sep 2022, Published online: 12 Oct 2022

References

  • Abdulrazag, Y., and A.S. Zekri Shedid. 2004. The effect of fracture characteristics on reduction of permeability by asphaltene precipitation in carbonate formation. Journal of Petroleum Science and Engineering 42 (2–4):171–82. doi:10.1016/j.petrol.2003.12.009.
  • Abu Tarboush, B.J., and M.M. Husein. Adsorption of asphaltenes from heavy oil onto in situ prepared NiO nanoparticles. Journal of Colloid and Interface Science 19 Apr 2012. 378164–69. 10.1016/j.jcis.2012.04.016 PMID: 22560489
  • Ahmadi, Y. 2021. Relation between asphaltene adsorption on the nanoparticles surface and asphaltene precipitation inhibition during real crude oil natural depletion tests. Iranian Journal of Oil and Gas Science and Technology 10:3.
  • Ahmadi, Y., B. Aminshahidy Effects of hydrophobic CaO and SiO2 nanoparticles on asphaltene precipitation envelope (APE): An experimental and modeling approach. Oil & Gas Science and Technology, 73, 2018–1, 56–66.
  • Ahmadi, Y., and B. Aminshahidy. 2020. Inhibition of asphaltene precipitation by hydrophobic CaO and SiO2 nanoparticles during natural depletion and CO2 tests. International Journal of Oil, Gas and Coal Technology 24 (3):394–414.
  • Ahmadi, Y., R. Kharrat, A. Hashemi, P. Bahrami, and S. Mahdavi. 2013. The effect of temperature and pressure on the reversibility of asphaltene precipitation. Petroleum Science and Technology 32 (18):2263–73. doi:10.1080/10916466.2013.799180.
  • Ahmadi, M., and M. Mansouri. 2021. Using new synthesis ZrO2-Based nanocomposites for improving water alternative associated gas tests considering interfacial tension and contact angle measurements. Energy & Fuels : An American Chemical Society Journal 35 (20):16724–34.
  • Alomair, O., and A. Alajmi. 2022. A novel experimental nanofluid-assisted steam flooding (NASF) approach for enhanced heavy oil recovery. Fuel 313 (1):122691. doi:10.1016/j.fuel.2021.122691.
  • ASTM D6560-17 standard test method for determination of asphaltenes (heptane insolubles) in crude petroleum and petroleum products ASTM international west conshohocken PA 2005.
  • Bagherpour, S., M. Riazi, M. Riazi, F. B. Cortés, and S. H. Mousavi. 2020. Investigating the performance of carboxylate-alumoxane nanoparticles as a novel chemically functionalized inhibitor on asphaltene precipitation. ACS Omega 5 (26):16149–64. doi:10.1021/acsomega.0c01732.
  • Balabin, R.M., R.Z. Syunyaev, T. Schmid, J. Stadler, E.I. Lomakina, and R. Zenobi. 2011. Asphaltene adsorption onto an iron surface: combined near-infrared (NIR. Raman and AFM Study of the Kinetics Thermodynamics and Layer Structure Energy Fuels 2011 25 (1):189–96. doi:10.1021/ef100779a.
  • Basahel, S.N., T.T. Ali, M. Mokhtar, and K. Narasimharao. Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange nanoscale res. Lett 201510 1−1310.1 10.1186/s11671-015-0780-z
  • Contreras–mateus, M. D., F. H. Sánchez, D. M. Cañas-Martínez, N. N. Nassar, and A. Chaves–guerrero. Effect of asphaltene adsorption on the magnetic and magnetorheological properties of heavy crude oils and Fe3O4 nanoparticles systems. Fuel 318, 15 June 2022123684 10.1016/j.fuel.2022.123684
  • Cortés, F. B., J. M. Mejía, M. A. Ruiz, P. Benjumea, and D. B. Riffel. 2012. Sorption oF asphaltenes onto nanoparticles of nickel oxide supported on nanoparticulated silica gel. Energy & Fuels : An American Chemical Society Journal 26 (3):1725–30.
  • Franco, C., A. Montoya, T. Nassar, and N.N. Pereira-Almao P, and F.B. Cortes. 2013. Adsorption and Subsequent Oxidation of Colombian Asphaltenes Onto Nickel And/Or Palladium Oxide Suorted on Fumed Silica Nanoparticles Energy Fuels 27 27 (12):7336–47. doi:10.1021/ef4000825.
  • Franco, C., E. Patiño, P. Benjumea, M.A. Ruiz, and F.B. Cortés. 2013.Kinetic and thermodynamic equilibrium of asphaltenes sorption onto nanoparticles of nickel oxide supported on nanoparticulated alumina̕. Fuel 105: 408–14.doi: 10.1016/j.fuel.2012.06.022
  • García-Cerda, L.A., K.M. Bernal-Ramos, S.M. Montemayor, M. A. Quevedo-Lόpez, R. Betancourt-Galindo, and D. Bueno-Báques. 2011. Preparation of hcp and fcc Ni and Ni/NiO nanoparticles using a citric acid assisted Pechini-type method. Journal of Nanomaterials 2011:162495 1–6. Article ID. doi:10.1155/2011/162495.
  • Hashemi, R., N.N. Nassar, and P. Pereira-Almao. 2012. Transport behavior of multi metallic ultra-dispersed nanoparticles in an oil-sands-packed bed column at a high temperature and pressure̕. Energy & Fuels : An American Chemical Society Journal 26 (3):1645–55. doi:10.1021/ef201939f.
  • Hosseini-Dastgerdi, Z., S. S. Meshkat, and L. Samadi. 2021. Investigation of Asphaltene aggregate size: Influence of Fe3O4 nanoparticles. Asphaltene Type, and Flocculant. Chemical Papers 75 (5):2023–32. doi:10.1007/s11696-020-01483-w.
  • Hosseinpour, N., A.A. Khodadadi, A. Bahramian, and Y. Mortazavi. 2013. Asphaltene adsorption onto acidic/basic metal oxide nanoparticles toward in situ upgrading of reservoir oils by nanotechnology langmuir. Langmuir 29 (46):14135–46. doi:10.1021/la402979h.
  • Jafarbeigi, E., E. Kamari, F. Salimi, and A.‏. Mohammadidoust. 2020.Experimental study of the effects of a novel nanoparticle on enhanced oil recovery in carbonate porous media. Journal of Petroleum Science and Engineering 195: 107602‏.doi: 10.1016/j.petrol.2020.107602
  • Jafarbeigi, E., F. Salimi, E. Kamari, and M. Mansouri. 2021. Effects of modified graphene oxide GO nanofluid on wettability and IFT changes: Experimental study for EOR applications‏. Petroleum Science 19 (4):1779–92.
  • Karimi, A., Z. Fakhroueian, A. Bahramian, N.P. Khiabani, J.B. Darabad, R. Azin, and S. Arya. 1991. Wettability alteration in carbonates using zirconium oxide nanofluids: EOR implications. Energy & Fuels : An American Chemical Society Journal 26 (2):1028–36.
  • Kashefi, S., M.N. Lotfollahi1, and A. Shahrabadi. 2018. Investigation of asphaltene adsorption onto zeolite beta nanoparticles to reduce asphaltene deposition in a silica sand pack̕ oil & gas science and technology - rev. IFP Energies Nouvelles 73:2–15.
  • Koka, J.S., J. Najman, S.G. Sayegh, A. George Asphaltene precipitation during enhanced recovery of heavy oils by gas injection. CIM/AOSTRA Paper 91-10 CIM/AOSTRA Technical Conference Banff Canada April, 21–24 1991.
  • Mahmoodi, H., M. Fattahi, and M. Motevassel. 2021. Graphene oxide–chitosan hydrogel for adsorptive removal of diclofenac from aqueous solution: Preparation, characterization, kinetic and thermodynamic modelling. RSC Advances 11 (57):36289. doi:10.1039/D1RA06069D.
  • Mansouri, M., M. Nademi, M.E. Olya, H. Lotfi Study of methyl tert-butyl ether (MTBE) photocatalytic degradation with UV/TiO2-ZnO-CuO nanoparticles J. Chem. Heal. Risks 2017 7 19–32.
  • Mansouri, M., M. Parhiz, B. Bayati, and Y. Ahmadi. 2021. Preparation of nickel oxide supported zeolite catalyst (nio/na-zsm-5) for asphaltene adsorption: A kinetic and thermodynamic study 2021. Iranian Journal of Oil and Gas Science and Technology 10 (2):1–35.
  • Mohammadi, M., M. Akbari, Z. Fakhroueian, A. Bahramian, A. Azin, and S. Arya. 2011. Inhibition of asphaltene precipitation by TiO 2 SiO 2 and ZrO 2 nanofluids. Energy & Fuels 25 (7):3150–56. doi:10.1021/ef2001635.
  • Naghdi, N., and B. Mirzayi. 2015. Adsorption and removal of asphaltene using synthesized maghemite and hematite nanoparticles energy fuels. Energy & Fuels 29 (3):1397–406. doi:10.1021/ef502494d.
  • Nassar, N.N., A. Hassan, and P. Pereira-Almao. 2011. Effect of surface acidity and basicity of aluminas on asphaltene adsorption and oxidation J. Journal of Colloid and Interface Science 360 (1):233–38.
  • Nassar, N.N., A. Hassan, and P. Pereira-Almao. 2011. Metal oxide nanoparticles for Asphaltene adsorption and oxidation̕. Energy & Fuels : An American Chemical Society Journal 25 (3):1017–23.
  • Nassar, N.N., A. Hassan, and P. Pereira-Almao. 2011. Pereira almao P thermogravimetric studies oncatalytic effect of metal oxide nanoparticles on asphaltene pyrolysis under inert conditions thermal analysis and calorimetry. Journal of Thermal Analysis and Calorimetry 110 (3):110 1327–1332. doi:10.1007/s10973-011-2045-0.
  • Nguele, R., H. Hirota, Y. Sugai, and K. Sasaki. 2021. Role of polymer-based nanofluids on asphaltene adsorption during carbon dioxide (CO2) injection. Energy & Fuels : An American Chemical Society Journal 35 (18):14746–57.
  • Rane, J. P., D. Harbottle, V. Pauchard, A. Couzis, and S. Banerjee. 2012. Adsorption kinetics of asphaltenes at the oil–water interface and nanoaggregation in the bulk. Langmuir 28 (26):9986–95. doi:10.1021/la301423c.
  • Rane, J. P., V. Pauchard, A. Couzis, and S. Banerjee. 2013. Interfacial rheology of asphaltenes at oil–water interfaces and interpretation of the equation of state. Langmuir 29 (15):4750–59. doi:10.1021/la304873n.
  • Setarehshenas, N., S.H. Hosseini, and G. Ahmadi. 2018. Optimization and kinetic model development for photocatalytic dye degradation Arab. Journal for Science and Engineering 43 (11):5785–97. doi:10.1007/s13369-017-3010-4.
  • Shojaei, B., R. Miri, A. Bazyari, and L. T. Thompson. Asphaltene adsorption on MgO, CaO, SiO2, and Al2O3 nanoparticles synthesized via the Pechini-type Sol−Gel method. Fuel 321, 1 August 2022124136 10.1016/j.fuel.2022.124136
  • Sudrajat, H., S. Babel, H. Sakai, and S. Takizawa. 2016.Rapid enhanced photocatalytic degradation of dyes using novel N-doped ZrO2 J. Environmental Management 165: 165 224–234.doi: 10.1016/j.jenvman.2015.09.036
  • Sultana, S., M.Z. Khan, K. Umar, M. Muneer, and M. Muneer. 2013. Electrical thermal photocatalytic and antibacterial studies of metallic oxide nanocomposite doped polyaniline. Journal of Materials Science and Technology 29 (9):795–800. doi:10.1016/j.jmst.2013.06.001.
  • Syunyaev, R.Z., R.M. Balabin, I.S. Akhatov, J.O. Safieva Adsorption of petroleum asphaltenes onto reservoir rock sands studied by near-infrared (NIR) spectroscopy energy fuels 200923 1230–36.
  • Trbovich, M.G., G.E. King Asphaltene deposit removal: long-lasting treatment with a Co-solvent Paper SPE-21038-MS Presented at the SPE International Symposium on Oilfield Chemistry 1991, 20–22. doi: 10.2118/21038-MS.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.