103
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Configuration effects of liquid fuel flameless combustion characteristics in a forward flow laboratory-scale furnace

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 9620-9632 | Received 17 Aug 2021, Accepted 30 Sep 2022, Published online: 13 Oct 2022

References

  • Arghode, V.K., and A.K. Gupta. 2010. Effect of flow field for colorless distributed combustion (CDC) for gas turbine combustion. Applied Energy 87 (5):1631–40. doi:10.1016/j.apenergy.2009.09.032.
  • Arghode, V.K., and A.K. Gupta. 2011. Investigation of forward flow distributed combustion for gas turbine application. Applied Energy 88 (1):29–40. doi:10.1016/j.apenergy.2010.04.030.
  • Cha, C.L., H.Y. Lee, and S.S. Hwang. 2019. An experiment analysis of MILD combustion with liquid fuel spray in a combustion vessel. Journal of Mechanical Science and Technology 33 (8):3717–24. doi:10.1007/s12206-019-0713-3.
  • Cho, E.S., D. Shin, J. Lu. 2013. Configuration effects of natural gas fired multi-pair regenerative burners in a flameless oxidation furnace on efficiency and emissions. Applied Energy 107:25–32.
  • de Azevedo CG, de Andrade JC, and de Souza Costa F. 2015. Flameless compact combustion system for burning hydrous ethanol. Energy 89:158–67. doi:10.1016/j.energy.2015.07.049
  • Derudi, M., R. Rota. 2011. Experimental study of the mild combustion of liquid hydrocarbons. In: Proceedings of the Combustion Institute. Elsevier Inc. pp. 3325–32.
  • Feser, J.S., S. Karyeyen, and A.K. Gupta. 2020.Flowfield impact on distributed combustion in a swirl assisted burner. Fuel 263: 116643. doi:10.1016/j.fuel.2019.116643
  • Hosseini, S.E., and M.A. Wahid. 2015. Effects of burner configuration on the characteristics of biogas flameless combustion. Combustion Science and Technology 187 (8):1240–62. doi:10.1080/00102202.2015.1031224.
  • Karyeyen, S., J.S. Feser, and A.K. Gupta. 2019. Swirl assisted distributed combustion behavior using hydrogen-rich gaseous fuels. Applied Energy 251:113354.
  • Khalil, A.E.E., and A.K. Gupta. 2018. Fostering distributed combustion in a swirl burner using prevaporized liquid fuels. Applied Energy 211:513–22.
  • Lille, S., W. Blasiak, and M. Jewartowski. 2005. Experimental study of the fuel jet combustion in high temperature and low oxygen content exhaust gases. Energy 30:373–84.
  • Li, P., F. Wang, Y. Tu, Yaojie Mei, Z Zhang, J Zheng, Y Liu, H Liu, Z Mi, J Zheng. 2014. Moderate or intense low-oxygen dilution oxy-combustion characteristics of light oil and pulverized coal in a pilot-scale furnace. Energy and Fuels. 28(2):1524–35. doi:10.1021/ef402240w.
  • Luhmann, H., F.C. Maldonado, R. Spörl, Scheffknecht, G. 2017. Flameless oxidation of liquid fuel oil in a reverse-flow cooled combustion chamber. Energy Procedia 120:222–29.
  • Mi, J., P. Li, F. Wang, Cheong, Kin-Pang and Wang, Guochang 2021. Review on miLD combustion of gaseous fuel: Its definition, ignition, evolution, and emissions. Energy and Fuels. 35(9):7572–607. doi:10.1021/acs.energyfuels.1c00511.
  • Motaalegh Mahalegi, H.K., and A. Mardani. 2019. Investigation of fuel dilution in ethanol spray MILD combustion. Applied Thermal Engineering 159:113898.
  • Reddy, V.M., and S. Kumar. 2013. Development of high intensity low emission combustor for achieving flameless combustion of liquid fuels. Propulsion and Power Research 2 (2):139–47. doi:10.1016/j.jppr.2013.04.006.
  • Reddy, V.M., D. Sawant, D. Trivedi, Kumar, Sudarshan. 2013. Studies on a liquid fuel based two stage flameless combustor. Proceedings of the Combustion Institute International Symposium on Combustion. 34(2):3319–26. doi:10.1016/j.proci.2012.06.028.
  • Reddy, V.M., D. Trivedi, D. Sawant, Sawant, Darshan and Kumar, Sudarshan 2015. Investigations on emission characteristics of liquid fuels in a swirl combustor. Combustion Science and Technology. 187(3):469–88. doi:10.1080/00102202.2014.956098.
  • Sharma, S., A. Chowdhury, and S. Kumar. 2020.A novel air injection scheme to achieve MILD combustion in a can-type gas turbine combustor. Energy 194: 116819. doi: 10.1016/j.energy.2019.116819
  • Sharma, S., R. Kumar, A. Chowdhury, Yoon, Youngbin and Kumar, Sudarshan. 2017. On the effect of spray parameters on CO and NOx emissions in a liquid fuel fired flameless combustor. Fuel 199:229–38.
  • Sharma, S., H. Pingulkar, A. Chowdhury, Kumar, Sudarshan. 2018. A new emission reduction approach in MILD combustion through asymmetric fuel injection. Combustion and Flame 193:61–75.
  • Sorrentino, G., U. Göktolga, M. De Joannon, Van Oijen, J, Cavaliere, A and De Goey, P. 2017. An experimental and numerical study of MILD combustion in a Cyclonic burner. Energy Procedia 120:649–56.
  • Sorrentino, G., P. Sabia, M. de Joannon, Bozza, Pio and Ragucci, Raffaele. 2018. Influence of preheating and thermal power on cyclonic burner characteristics under mild combustion. Fuel 233:207–14.
  • Sorrentino, G., P. Sabia, M. De Joannon, Cavaliere, Antonio and Ragucci, Raffaele. 2016. The effect of diluent on the sustainability of MILD combustion in a cyclonic burner. Flow, Turbulence and Combustion. 96(2):449–68. doi:10.1007/s10494-015-9668-3.
  • Trivedi SKVMRDS, D. 2015. An experimental study on MILD combustion of prevaporised liquid fuels. Applied Energy 151:3319–26.
  • Wang, G., K.P. Cheong, J. Si, Mi, Jianchun. 2021. Nonpremixed flameless combustion in a furnace: Influence of burner configuration. Energy and Fuels. 35(4):3333–47. doi:10.1021/acs.energyfuels.0c03503.
  • Weber, R., J. P. Smart, and W. V. K. 2005. On the (MILD) combustion of gaseous, liquid, and solid fuels in high temperature preheated air. Proceedings of the Combustion Institute International Symposium on Combustion 30 (2):2623–29. doi:10.1016/j.proci.2004.08.101.
  • Wünning, J.A., and J.G. Wünning. 1997. Flameless oxidation to reduce thermal no-formation. Progress in Energy and Combustion Science 23 (1):81–94. doi:10.1016/S0360-1285(97)00006-3.
  • Xing, F., A. Kumar, Y. Huang, Chan, Shining, Ruan, Can, Gu, Sai and Fan, Xiaolei. 2017. Flameless combustion with liquid fuel: A review focusing on fundamentals and gas turbine application. Applied Energy 193:28–51.
  • Ye, J., P.R. Medwell, B.B. Dally, Evans, Michael J. 2016. The transition of ethanol flames from conventional to MILD combustion. Combustion and Flame 171:173–84.
  • Ye, J., P.R. Medwell, E. Varea, Kruse, Stephan, Dally, Bassam B and Pitsch, Heinz G. 2015. An experimental study on MILD combustion of prevaporised liquid fuels. Applied Energy 151:93–101.
  • Yu, Y., W. Gaofeng, L. Qizhao, Chengbiao, Ma and Xianjun, Xing. 2010. Flameless combustion for hydrogen containing fuels. International Journal of Hydrogen Energy. 35(7):2694–97. doi:10.1016/j.ijhydene.2009.04.036.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.