99
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A novel hybrid approach to improve the performance of the solar collector: combined effect of roughness and duct modification

ORCID Icon, , &
Pages 9796-9810 | Received 18 Apr 2022, Accepted 30 Sep 2022, Published online: 05 Nov 2022

References

  • ASHRAE Standard 93-77. 1977. Methods of testing to determine the thermal performance of solar collector. Ney York, NY: ASHRAE.
  • Bhushan, B., and R. Singh. 2010. A review on methodology of artificial roughness used in duct of solar air heaters. Energy 35 (1):202–12. doi:10.1016/j.energy.2009.09.010.
  • Bhushan, B., and R. Singh. 2012. Thermal and thermohydraulic performance of roughened solar air heater having protruded absorber plate. Solar Energy 86 (11):3388–96. doi:10.1016/j.solener.2012.09.004.
  • Gill, R. S., et al. 2017. Investigation on performance enhancement due to staggered piece in a broken arc rib roughened solar air heater duct. Renewable Energy 104:148–62. doi:10.1016/j.renene.2016.12.002.
  • Goel, V., P. Guleria, and R. Kumar. 2017. Effect of apex angle variation on thermal and hydraulic performance of roughened triangular duct. International Communications in Heat and Mass Transfer 86:239–44. doi:10.1016/j.icheatmasstransfer.2017.06.008.
  • Hamid, M. O., and B. Zhang. 2015. Field synergy analysis for turbulent heat transfer on ribs roughened solar air heater. Renewable Energy 83:1007–19. doi:10.1016/j.renene.2015.05.031.
  • Hans, V. S., R. P. Saini, and J. S. Saini. 2010. Heat transfer and friction factor correlations for a solar air heater duct roughened artificially with multiple v-ribs. Solar Energy 84 (6):898–911.
  • Jain, S.K., G.D. Arawal, and R. Misra. 2020. Experimental investigation of thermohydraulic performance of the solar air heater having arc-shaped ribs with multiple gaps. Journal of Thermal Science and Engineering Applications 12 (1). doi:10.1115/1.4044427.
  • Jia, R., A. Saidi, and B. Sundén. 2002. Heat transfer enhancement in square ducts with V-shaped ribs of various angles. Turbo Expo: Power for Land, Sea, and Air 36088:469–476.
  • Kalogirou, S. A. 2004. Solar thermal collectors and applications. Progress in Energy and Combustion Science 30 (3):231–95. doi:10.1016/j.pecs.2004.02.001.
  • Kline, S. J., and F. A. McClintock. 1953. Describing uncertainties in single-sample experiments. Mech. Engineering 75: 3–8.
  • Kumar, R., and V. Anoop Kumar. 2016. Thermal and fluid dynamic characteristics of flow through triangular cross-sectional duct: A review. Renewable and Sustainable Energy Reviews 61:123–40. doi:10.1016/j.rser.2016.03.011.
  • Kumar, R., V. Goel, and A. Kumar. 2018. Investigation of heat transfer augmentation and friction factor in triangular duct solar air heater due to forward facing chamfered rectangular ribs: A CFD based analysis. Renewable Energy 115:824–35. doi:10.1016/j.renene.2017.09.010.
  • Kumar, R., V. Goel, P. Singh, A. Saxena, A. S. Kashyap, and A. Rai. 2019. Performance evaluation and optimization of solar assisted air heater with discrete multiple arc shaped ribs. Journal of Energy Storage 26:100978. doi:10.1016/j.est.2019.100978.
  • Kumar, R., A. Kumar, and V. Goel. 2017. A parametric analysis of rectangular rib roughened triangular duct solar air heater using computational fluid dynamics. Solar Energy 157:1095–107. doi:10.1016/j.solener.2017.08.071.
  • Kumar, R., A. Kumar, and V. Goel. 2018. Effect of rounded corners on heat transfer and fluid flow through triangular duct. Journal of Heat Transfer 140 (12). doi:10.1115/1.4040957.
  • Kumar, R., A. Kumar, and V. Goel. 2019. Performance improvement and development of correlation for friction factor and heat transfer using computational fluid dynamics for ribbed triangular duct solar air heater. Renewable Energy 131:788–99. doi:10.1016/j.renene.2018.07.078.
  • Kumar, R., A. Kumar, and V. Goel. 2019. Simulation of flow and heat transfer in triangular cross-sectional solar-assisted air heater. Journal of Solar Energy Engineering 141 (1):011007.
  • Kumar, V., and R. Murmu. 2020. Experimental investigation for thermal performance of inclined spherical ball roughened solar air duct. Renewable Energy 172:1365–92. doi:10.1016/j.renene.2020.11.150.
  • Kumar, A., R. P. Saini, and J. S. Saini. 2012. Experimental investigation on heat transfer and fluid flow characteristics of air flow in a rectangular duct with multi v-shaped rib with gap roughness on the heated plate. Solar Energy 86 (6):1733–49. doi:10.1016/j.solener.2012.03.014.
  • Kumar, A., R. P. Saini, and J. S. Saini. 2013. Development of correlations for Nusselt number and friction factor for solar air heater with roughened duct having multi v-shaped with gap rib as artificial roughness. Renewable Energy 58:151–63. doi:10.1016/j.renene.2013.03.013.
  • Ligrani, P. M. 1986. Development of customized shear layers on smooth and rough surfaces. International Journal of Heat and Fluid Flow 7 (4):266–77. doi:10.1016/0142-727X(86)90004-4.
  • Ligrani, P. M., M. M. Oliveira, and T. Blaskovich. 2003. Comparison of heat transfer augmentation techniques. AIAA Journal 41 (3):337–62. doi:10.2514/2.1964.
  • Saini, R. P., and J. S. Saini. 1997. Heat transfer and friction factor correlations for artificially roughened ducts with expanded metal mesh as roughness element. International Journal of Heat and Mass Transfer 40 (4):973–86. doi:10.1016/0017-9310(96)00019-1.
  • Saini, R. P., and J. Verma. 2008. Heat transfer and friction factor correlations for a duct having dimple-shape artificial roughness for solar air heaters. Energy 33 (8):1277–87. doi:10.1016/j.energy.2008.02.017.
  • Sethi, M., Varun, and N. S. Thakur. 2012. Correlations for solar air heater duct with dimpled shape roughness elements on absorber plate. Solar Energy 86 (9):2852–61. doi:10.1016/j.solener.2012.06.024.
  • Shah, R. K., and P. S. Dusan. 2003. Fundamentals of heat exchanger design. New Jersey: John Wiley & Sons.
  • Singh, A. P. 2014. Heat transfer and friction factor correlations for multiple arc shape roughness elements on the absorber plate used in solar air heaters. Experimental Thermal and Fluid Science 54:117–26.
  • Singh, I., S. Vardhan, S. Singh, and A. Singh. 2019. Experimental and CFD analysis of solar air heater duct roughened with multiple broken transverse ribs: A comparative study. Solar Energy 188:519–32.
  • Soi, A., R. Singh, and B. Bhushan. 2019. Performance of solar air heater having absorber plate roughened with protrusions of different shapes. 2019 IEEE 2nd International Conference on Renewable Energy and Power Engineering (REPE), Toronto, Canada. IEEE.
  • Sundén, B. 2007. Computational fluid dynamics in research and design of heat exchangers. Heat Transfer Engineering 28 (11):898–910. doi:10.1080/01457630701421679.
  • Tanda, G. 2011. Effect of rib spacing on heat transfer and friction in a rectangular channel with 45 angled rib turbulators on one/two walls. International Journal of Heat and Mass Transfer 54 (5–6):1081–90. doi:10.1016/j.ijheatmasstransfer.2010.11.015.
  • Yadav, Anil Singh, and J. L. Bhagoria. 2014. A CFD based thermo-hydraulic performance analysis of an artificially roughened solar air heater having equilateral triangular sectioned rib roughness on the absorber plate.” International Journal of Heat and Mass Transfer 70: 1016–1039.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.