137
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Novel heat pump and heat integration assisted pressure swing distillation for separating methyl cyclohexane and n-butyl alcohol to save energy and reduce CO2 emissions

ORCID Icon, , , &
Pages 9633-9648 | Received 22 Apr 2022, Accepted 05 Oct 2022, Published online: 26 Oct 2022

References

  • Afshari, F., O. Comakli, N. Adiguzel, and S. Karagoz. 2016. Optimal charge amount for different refrigerants in air-to-water heat pumps. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering 40(4):325–35. doi:10.1007/s40997-016-0028-2.
  • Bruinsma, O. S. L., and S. Spoelstra. 2010. Heat pumps in distillation. In Distillation & Absorption Conference, Eindhoven, The Netherland. In A. Haan, H. Kooijman and A. Gorak,(editors). 21–28.
  • Chen, L. J., Q. Ye, Z. Y. Jiang, J. Yuan, H. X. Zhang, and N. G. Wang. 2020. Novel methodology for determining the optimal vapor recompressed assisted distillation process based on economic and energy efficiency. Separation and Purification Technology 251:117393. doi:10.1016/j.seppur.2020.117393.
  • Cui, C. T., J. S. Sun, and X. G. Li. 2017. A hybrid design combining double-effect thermal integration and heat pump to the methanol distillation process for improving energy efficiency. Chemical Engineering and Processing: Process Intensification 119:81–92. doi:10.1016/j.cep.2017.06.003.
  • Gao, X. X., Y. Yang, M. Y. Chen, Q. R. Cheng, and K. R. Lu. 2022. Novel heat pump reactive distillation and dividing-wall column reactive distillation processes for synthesizing isopropyl acetate to save TAC and reduce CO2 emissions. Chemical Engineering and Processing - Process Intensification 171:108746. doi:10.1016/j.cep.2021.108746.
  • Gutiérrez-Guerra, R., J. G. Segovia-Hernández, and S. Hernández. 2009. Reducing energy consumption and CO2 emissions in extractive distillation. Chemical Engineering Research & Design 87(2):145–52. doi:10.1016/j.cherd.2008.07.004.
  • Gu, J. L., X. Q. You, C. Y. Tao, J. Li, and V. Gerbaud. 2018. Energy-Saving reduced-pressure extractive distillation with heat integration for separating the biazeotropic ternary mixture tetrahydrofuran–Methanol–Water. Industrial & Engineering Chemistry Research 57(40):13498–510. doi:10.1021/acs.iecr.8b03123.
  • Gu, J. L., X. Q. You, C. G. Tao, J. Li, W. F. Shen, and J. Li. 2018. Improved design and optimization for separating tetrahydrofuran–water azeotrope through extractive distillation with and without heat integration by varying pressure. Chemical Engineering Research & Design 133:303–13. doi:10.1016/j.cherd.2018.03.015.
  • Iwakabe, K., M. Nakaiwa, K. J. Huang, T. Nakanishi, A. Rosjorde, T. Ohmori, A. Endo, and T. Yamamoto. 2006. Energy saving in multicomponent separation using an internally heat-integrated distillation column (HIDiC). Applied Thermal Engineering 26(13):1362–68. doi:10.1016/j.applthermaleng.2005.05.026.
  • Jana, A. K. 2019. Performance analysis of a heat integrated column with heat pumping. Separation and Purification Technology 209:18–25. doi:10.1016/j.seppur.2018.07.011.
  • Jiang, T. X., C. Z. Jin, Z. J. Jin, and Y. H. Xing. 1989. A study on vapour-liquid equilibrium of n-butanol (1) -methylcyclohexane (2) at subat mospheric pressures. Journal of Jilin Institute of Chemical Technology 6(3):13–20.
  • Li, X. G., C. T. Cui, H. Li, and X. Gao. 2019. Process synthesis and simulation-based optimization of ethylbenzene/styrene separation using double-effect heat integration and self-heat recuperation technology: A techno-economic analysis. Separation and Purification Technology 228:115760. doi:10.1016/j.seppur.2019.115760.
  • Li, X., X. L. Geng, P. Z. Cui, J. W. Yang, Z. Y. Zhu, Y. L. Wang, and D. M. Xu. 2019. Thermodynamic efficiency enhancement of pressure-swing distillation process via heat integration and heat pump technology. Applied Thermal Engineering 154:519–29. doi:10.1016/j.applthermaleng.2019.03.118.
  • Li, Y. N., Q. Zhao, T. X. Liu, K. X. Yin, Y. S. Dai, Z. Y. Zhu, P. Z. Cui, Y. L. Wang, and L. M. Zhong. 2022. Economic, environmental, and exergy analysis of an efficient separation process for recovering low-carbon alcohol from wastewater. Journal of Cleaner Production 365:132733. doi:10.1016/j.jclepro.2022.132733.
  • Lü, L. P., L. Zhu, H. M. Liu, H. Li, and S. R. Sun. 2018. Comparison of continuous homogenous azeotropic and pressure-swing distillation for a minimum azeotropic system ethyl acetate/n-hexane separation. Chinese Journal of Chemical Engineering 26(10):2023–33. doi:10.1016/j.cjche.2018.02.002.
  • Mangili, P. V. 2020. Thermoeconomic and environmental assessment of pressure-swing distillation schemes for the separation of di-n-propyl ether and n-propyl alcohol. Chemical Engineering and Processing - Process Intensification 148:107816. doi:10.1016/j.cep.2020.107816.
  • Mao, W. X., Y. Q. Cao, R. C. Shen, J. H. Zhou, X. G. Zhou, and W. Li. 2020. Heat integrated technology assisted pressure-swing distillation for the mixture of ethylene glycol and 1,2-butanediol. Separation and Purification Technology 241:116740. doi:10.1016/j.seppur.2020.116740.
  • Niu, F. F., Y. M. Liu, X. N. Wang, and X. Q. Wang. 2021. Separation of methylcyclopentane, cyclohexane and methylcyclohexane mixture by atmospheric distillation. The Journal of Chemical Thermodynamics 161:106535. doi:10.1016/j.jct.2021.106535.
  • Pleşu, V., A. E. Bonet Ruiz, J. Bonet, and J. Llorens. 2014. Simple equation for suitability of heat pump use in distillation. 24th European Symposium on Computer Aided Process Engineering 33:1327–32. doi:10.1016/B978-0-444-63455-9.50056-8.
  • Shi, X. J., X. Y. Zhu, X. X. Zhao, and Z. S. Zhang. 2020. Performance evaluation of different extractive distillation processes for separating ethanol/tert-butanol/water mixture. Process Safety and Environmental Protection 137:246–60. doi:10.1016/j.psep.2020.02.015.
  • Waheed, M. A., A. O. Oni, S. B. Adejuyigbe, B. A. Adewumi, and D. A. Fadare. 2014. Performance enhancement of vapor recompression heat pump. Applied Energy 114:69–79. doi:10.1016/j.apenergy.2013.09.024.
  • Xia, H., Q. Ye, S. Y. Feng, R. Li, and X. M. Suo. 2017. A novel energy-saving pressure swing distillation process based on self-heat recuperation technology. Energy 141:770–81. doi:10.1016/j.energy.2017.09.108.
  • Xu, Y. G., J. L. Li, Q. Ye, and Y. D. Li. 2021. Design and optimization for the separation of tetrahydrofuran/isopropanol/water using heat pump assisted heat-integrated extractive distillation. Separation and Purification Technology 277:119498. doi:10.1016/j.seppur.2021.119498.
  • Zhang, Q. J., M. L. Liu, C. X. D. Li, and A. W. Zeng. 2017. Heat-integrated pressure-swing distillation process for separating the minimum-boiling azeotrope ethyl-acetate and ethanol. Separation and Purification Technology 189:310–34. doi:10.1016/j.seppur.2017.08.016.
  • Zhang, Q. J., M. L. Liu, and A. W. Zeng. 2019. Performance enhancement of pressure-swing distillation process by the combined use of vapor recompression and thermal integration. Computers & Chemical Engineering 120:30–45. doi:10.1016/j.compchemeng.2018.09.014.
  • Zhang, Q. J., S. J. Yang, P. Y. Shi, W. Hou, A. W. Zeng, Y. G. Ma, and X. G. Yuan. 2020. Economically and thermodynamically efficient heat pump-assisted side-stream pressure-swing distillation arrangement for separating a maximum-boiling azeotrope. Applied Thermal Engineering 173:115228. doi:10.1016/j.applthermaleng.2020.115228.
  • Zhu, Z. Y., H. Q. Qi, Y. Y. Shen, X. M. Qiu, H. R. Zhang, J. G. Qi, J. W. Yang, L. Wang, Y. L. Wang, Y. X. Ma, et al. 2021. Energy-saving investigation of organic material recovery from wastewater via thermal coupling extractive distillation combined with heat pump based on thermoeconomic and environmental analysis. Process Safety and Environmental Protection 146:441–50. doi:10.1016/j.psep.2020.09.014.
  • Zhu, Z. Y., L. L. Wang, Y. X. Ma, W. L. Wang, and Y. L. Wang. 2015. Separating an azeotropic mixture of toluene and ethanol via heat integration pressure swing distillation. Computers & Chemical Engineering 76:137–49. doi:10.1016/j.compchemeng.2015.02.016.
  • Zhu, Z. Y., D. F. Xu, X. Z. Liu, Z. Zhang, and Y. L. Wang. 2016. Separation of acetonitrile/methanol/benzene ternary azeotrope via triple column pressure-swing distillation. Separation and Purification Technology 169:66–77. doi:10.1016/j.seppur.2016.06.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.