230
Views
2
CrossRef citations to date
0
Altmetric
Research Article

The co-pyrolysis of waste tires and waste engine oil

, , , , , & show all
Pages 9764-9778 | Received 17 Jun 2022, Accepted 30 Sep 2022, Published online: 25 Oct 2022

References

  • Alvarez, J., M. Amutio, G. Lopez, L. Santamaria, J. Bilbao, and M. Olazar. 2019. Improving bio-oil properties through the fast co-pyrolysis of lignocellulosic biomass and waste tyres. Waste Management 85:385–95. doi:10.1016/j.wasman.2019.01.003.
  • Aydin, H., and C. Lkl. 2012. Optimization of fuel production from waste vehicle tires by pyrolysis and resembling to diesel fuel by various desulfurization methods. Fuel 102 (none):605–12. doi:10.1016/j.fuel.2012.06.067.
  • Chen, R., Q. Li, Y. Zhang, X. Xu, and D. Zhang. 2019. Pyrolysis kinetics and mechanism of typical industrial non-tyre rubber wastes by peak-differentiating analysis and multi kinetics methods. Fuel 235 (JAN.1):1224–37. doi:10.1016/j.fuel.2018.08.121.
  • Debek, C., and J. Walendziewski. 2015. Hydrorefining of oil from pyrolysis of whole tyres for passenger cars and vans. Fuel 159 (nov.1):659–65. doi:10.1016/j.fuel.2015.07.024.
  • Durak, H., and T. Aysu. 2016. Pyrolysis of Xanthium strumarium in a fixed bed reactor: Effects of boron catalysts and pyrolysis parameters on product yields and character. Energy Sources Part A Recovery Utilization & Environmental Effects 38:1400–09. doi:10.1080/15567036.2013.819049.
  • Ismail, H. Y., A. Abbas, F. Azizi, and J. Zeaiter. 2017. Pyrolysis of waste tires: A modeling and parameter estimation study using aspen plus. Waste Management 60 (feb.):482. doi:10.1016/j.wasman.2016.10.024.
  • Kabir, G., and B. H. Hameed. 2017. Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals. Renewable & Sustainable Energy Reviews 70 (Apr.):945–67. doi:10.1016/j.rser.2016.12.001.
  • Kan, T., V. Strezov, and T. Evans. 2017. Fuel production from pyrolysis of natural and synthetic rubbers. Fuel 191 (mar.1):403–10. doi:10.1016/j.fuel.2016.11.100.
  • Kumaravel, S. T., A. Murugesan, and A. Kumaravel. 2016. Tyre pyrolysis oil as an alternative fuel for diesel engines – a review. Renewable and Sustainable Energy Reviews 60:1678–85. doi:10.1016/j.rser.2016.03.035.
  • Kuśmierek, K., A. Świątkowski, T. Kotkowski, R. Cherbański, and E. Molga. 2021. Adsorption on activated carbons from end-of-life tyre pyrolysis for environmental applications. Part I. preparation of adsorbent and adsorption from gas phase[j]. Journal of Analytical and Applied Pyrolysis 157:105205. doi:10.1016/j.jaap.2021.105205.
  • Liu, L., S. Luo, J. Wang, L. Xiang, and D. Guo. 2020. Copyrolysis of tire powder and engine oil: Reaction behavior and kinetics. Asia-Pacific Journal of Chemical Engineering. doi:10.1002/apj.2486.
  • Mishra, R. K., and K. Mohanty. 2020. Kinetic analysis and pyrolysis behaviour of waste biomass towards its bioenergy potential. Bioresource Technology 311 (prepublish):123480. doi:10.1016/j.biortech.2020.123480.
  • Müsellim, E., M. H. Tahir, M. S. Ahmad, and S. Ceylan. 2018. Thermokinetic and TG/DSC-FTIR study of pea waste biomass pyrolysis. Applied Thermal Engineering 137:54–61. doi:10.1016/j.applthermaleng.2018.03.050.
  • Nsa, B., and A. Sc. 2021. Thermokinetic analysis and product characterization of waste tire-hazelnut shell co-pyrolysis: Tg-ftir and fixed bed reactor study. Journal of Environmental Chemical Engineering. doi:10.1016/j.jece.2021.106165.
  • Panko, J., M. Kreider, and K. Unice. 2018. Review of tire wear emissions. Non-Exhaust Emissions 147–60. doi:10.1016/b978-0-12-811770-5.00007-8.
  • Qiang, H., A. Zt, A. Dy, A. Hy, A. Js, and A. Hc. 2020. Thermal behavior, kinetics and gas evolution characteristics for the co-pyrolysis of real-world plastic and tyre wastes. Journal of Cleaner Production 260. doi:10.1016/j.jclepro.2020.121102.
  • Salmasi, S., M. S. Abbas-Abadi, M. N. Haghighi, and H. Abedini. 2015. The effect of different zeolite based catalysts on the pyrolysis of poly butadiene rubber. Fuel 160:544–48. doi:10.1016/j.fuel.2015.07.091.
  • Seifali , Abbas-Abadi, et al. 2018. The consideration of different effective Zeolite based catalysts and heating rate on the pyrolysis of Styrene Butadiene Rubber (SBR) in a stirred reactor. Energy Fuel 123:58–63. doi:10.1021/acs.energyfuels.7b02743.
  • Sowmya Dhanalakshmi, C., and P. Madhu. 2021. Biofuel production of neem wood bark (;) through flash pyrolysis in a fluidized bed reactor and its chromatographic characterization. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 43 (4):428–43. doi:10.1080/15567036.2019.1624893.
  • Tahir, M. H., G. Çakman, J. L. Goldfarb, Y. Topcu, S. R. Naqvi, and S. Ceylan. 2019. Demonstrating the suitability of canola residue biomass to biofuel conversion via pyrolysis through reaction kinetics, thermodynamics and evolved gas analyses. Bioresource Technology 279:67–73. doi:10.1016/j.biortech.2019.01.106.
  • Torretta, V., E. C. Rada, M. Ragazzi, E. Trulli, I. A. Istrate, and L. I. Cioca. 2015. Treatment and disposal of tyres: Two EU approaches. A review. Waste Management 45:152–60. doi:10.1016/j.wasman.2015.04.018.
  • Uçar, S., and S. Karagöz. 2014. Co-pyrolysis of pine nut shells with scrap tires. Fuel 137:85–93. doi:10.1016/j.fuel.2014.07.082.
  • Vichaphund, S., D. Aht-Ong, V. Sricharoenchaikul, and D. Atong. 2017. Effect of cv-zsm-5, ni-zsm-5 and fa-zsm-5 catalysts for selective aromatic formation from pyrolytic vapors of rubber wastes. Journal of Analytical & Applied Pyrolysis 124:733–41. doi:10.1016/j.jaap.2016.11.011.
  • Xue, J., T. Chellappa, S. Ceylan, and J. L. Goldfarb. 2018. Enhancing biomass + coal co-firing scenarios via biomass torrefaction and carbonization: Case study of avocado pit biomass and illinois no. 6 coal. Renewable Energy 122:152–62. doi:10.1016/j.renene.2018.01.066.
  • Yuan, T., A. Tahmasebi, and J. Yu. 2015. Comparative study on pyrolysis of lignocellulosic and algal biomass using a thermogravimetric and a fixed-bed reactor. Bioresource Technology 175:333–41. doi:10.1016/j.biortech.2014.10.108.
  • Zhang, Y., G. Ji, C. Chen, Y. Wang, W. Wang, and A. Li. 2020. Liquid oils produced from pyrolysis of plastic wastes with heat carrier in rotary kiln. Fuel Processing Technology 206 (C):106455. doi:10.1016/j.fuproc.2020.106455.
  • Zhang, X., H. Lei, L. Zhu, X. Zhu, M. Qian, G. Yadavalli, J. Wu, and S. Chen. 2016. Thermal behavior and kinetic study for catalytic co-pyrolysis of biomass with plastics. Bioresource Technology 220:233–38. doi:10.1016/j.biortech.2016.08.068.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.