250
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Determination of the performance improvement of a PV/T hybrid system with a novel inner plate-finned collective cooling with Al2O3 nanofluid

, & ORCID Icon
Pages 9663-9681 | Received 26 Aug 2022, Accepted 09 Oct 2022, Published online: 25 Oct 2022

References

  • Aberoumand, S., S. Ghamari, and B. Shabani. 2018. Energy and exergy analysis of a photovoltaic thermal (PV/T) system using nanofluids: An experimental study. Solar Energy 165:167–77. doi:10.1016/j.solener.2018.03.028.
  • Anthony, O., N. Ogueke, G. Nwaji, and E. Anyanwu 2019. Hybrid solar water heating/Nocturnal Radiation Cooling System I: A review of the progress, prospects and challenges. Energy and Buildings 198:412–30. June. doi:10.1016/j.enbuild.2019.06.017.
  • Bianco, V., F. Scarpa, and L. A. Tagliafico. 2018.Numerical analysis of the Al2O3-water nanofluid forced laminar convection in an asymmetric heated channel for application in flat plate PV/T collector. Renewable Energy 116: 9–21. doi:10.1016/j.renene.2017.09.067.
  • Brinkman, H. C. 1952. The viscosity of concentrated suspensions and solutions. The Journal of Chemical Physics 20 (4):571. doi:10.1063/1.1700493.
  • Colla, L., L. Fedele, O. Manca, L. Marinelli, and S. Nardini. 2015. Experimental and numerical investigation on forced convection in circular tubes with nanofluids. Heat Transfer Engineering 37(13-14): 1201–1210. doi:10.1080/01457632.2015.1112617.
  • Dev, A., R. Kumar, and R. P. Saini. 2022. Experimental evaluation of performance of a hybrid solar photovoltaic (PV/T) panel integrated with effective cooling solutions with water base nanofluids and phase change materials. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 44(3):7287–302. doi:10.1080/15567036.2022.2107732.
  • Ebaid, M. S. Y., A. M. Ghrair, and M. Al-Busoul. 2018.Experimental investigation of cooling photovoltaic (PV) panels using (TiO2) nanofluid in water -polyethylene glycol mixture and (Al2O3) nanofluid in water- cetyltrimethylammonium bromide mixture. Energy Conversion and Management 155: 324–43. doi:10.1016/j.enconman.2017.10.074.
  • Elminshawy, N., A. Elminshawy, A. Osama, M. Bassyouni, and M. Arıcı. 2022. Experimental performance analysis of enhanced concentrated photovoltaic utilizing various mass flow rates of Al2O3-nanofluid: Energy, exergy, and exergoeconomic study. Sustainable Energy Technologies and Assessments 53:102723. doi:10.1016/j.seta.2022.102723.
  • Elminshawy, A., K. Morad, N. A. Elminshawy, and Y. Elhenawy. 2021. Performance enhancement of concentrator photovoltaic systems using nanofluids. International Journal of Energy Research 45(2):2959–79. doi:10.1002/er.5991.
  • Erkan, O., M. Özkan, O. Arslan, O. Erkan, M. Özkan, “O. Erkan, M. Özkan and O. Arslan. Mini Kanal İle Fotovoltaik Hücre Soğutma. International Journal of Multidisciplinary Studies and Innovative Technologies 2(2):34-38.
  • Hasan, H., J. Sherzaa, L. Abd, K. Ameena, A. Abed, and K. Sopian. 2022. Study the effect of flow water/Al2O3 nanofluid inside mini-channel for cooling concentrated multi-junction solar cell. Frontiers in Heat and Mass Transfer (FHMT) 18:45.
  • Hasanuzzaman, M., A. B. M. A. Malek, M. M. Islam, A. K. Pandey, and N. A. Rahim. 2016.Global advancement of cooling technologies for PV systems: A review. Solar Energy 137:25–45. doi:10.1016/j.solener.2016.07.010.
  • Hegedus, S., and A. Luque. 2005. Status, trends, challenges and the bright future of solar electricity from photovoltaics. Handbook of photovoltaic science and engineering 1–43.
  • Huaxu, L., W. Fuqiang, Z. Dong, C. Ziming, Z. Chuanxin, L. Bo, and X. Huijin. 2020. Experimental investigation of cost-effective ZnO nanofluid based spectral splitting CPV/T system. Energy 194:116913. doi:10.1016/j.energy.2020.116913.
  • Huide, F., Z. Xuxin, M. Lei, Z. Tao, W. Qixing, and S. Hongyuan 2017. A comparative study on three types of solar utilization technologies for buildings: Photovoltaic, solar thermal and hybrid photovoltaic/thermal systems. Energy Conversion and Management 140:1–13. May. doi:10.1016/j.enconman.2017.02.059.
  • Hussien, H. A., M. Hasanuzzaman, A. H. Noman, and A. R. Abdulmunem. 2014. Enhance photovoltaic/thermal system performance by using nanofluid. 3rd IET International Conference on Clean Energy and Technology (CEAT) 2014, Kuching, Malaysia, 1–5.
  • Incropera, F. P., A. S. Lavine, T. L. Bergman, and D. P. DeWitt. 2007. Fundamentals of heat and mass transfer. New York: Wiley.
  • Kayri, I., and M. T. Gencoglu. 2019. Predicting power production from a photovoltaic panel through artificial neural networks using atmospheric indicators. Neural Computing & Applications 31 (8):3573–86. doi:10.1007/s00521-017-3271-6.
  • Kazem, H. A., M. T. Chaichan, and A. H. Al-Waeli. 2022. Effect of CuO-water-ethylene glycol nanofluids on the performance of photovoltaic/thermal energy system: An experimental study. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 44 (2):3673–91. doi:10.1080/15567036.2022.2070305.
  • Khanları, A. 2018. Plakalı Isı Değiştiricilerin Deneysel ve Sayısal Analizi. Doktora Tezi, Ankara: Gazi Üniversitesi Fen Bilimleri Enstitüsü, 3–12.
  • Khare, V., S. Nema, and P. Baredar. 2016.Solar–wind hybrid renewable energy system: A review. Renewable and Sustainable Energy Reviews 58: 23–33. doi:10.1016/j.rser.2015.12.223.
  • Kidegho, G., F. Njoka, C. Muriithi, and R. Kinyua. 2021.Evaluation of thermal interface materials in mediating PV cell temperature mismatch in PV–TEG power generation. Energy Reports 7: 1636–50. doi:10.1016/j.egyr.2021.03.015.
  • Kreith, F., P. Norton, and D. Brown. 1990. A comparison of CO2 emissions from fossil and solar power plants in the United States. Energy 15(12):1181–98. doi:10.1016/0360-5442(90)90110-N.
  • Liu, L., L. Zhu, Y. Wang, Q. Huang, Y. Sun, and Z. Yin. 2011. Heat dissipation performance of silicon solar cells by direct dielectric liquid immersion under intensified illuminations. Solar Energy 85(5):922–30. doi:10.1016/j.solener.2011.02.007.
  • Manigandan, S., and V. Kumar. 2019. Comparative study to use nanofluid ZnO and CuO with phase change material in photovoltaic thermal system. International Journal of Energy Research 43(5):1882–91. doi:10.1002/er.4442.
  • Mokhtari, S., K. D. Skelly, E. A. Krull, A. Coughlan, N. P. Mellott, Y. Gong, R. Borges, and A. W. Wren. 2017. Copper-containing glass polyalkenoate cements based on SiO2–ZnO–cao–sro–p2o5 glasses: Glass characterization, physical and antibacterial properties. Journal of Materials Science 52(15):8886–903. doi:10.1007/s10853-017-0945-5.
  • Muneeshwaran, M., U. Sajjad, T. Ahmed, M. Amer, H. M. Ali, and C. C. Wang. 2020. Performance improvement of photovoltaic modules via temperature homogeneity improvement. Energy 203:117816. doi:10.1016/j.energy.2020.117816.
  • Murshed, S. M. S., K. C. Leong, and C. Yang. 2005. Enhanced thermal conductivity of TiO2—water based nanofluids. International Journal of Thermal Sciences 44(4):367–73. doi:10.1016/j.ijthermalsci.2004.12.005.
  • Pérez-Aparicio, E., I. Lillo-Bravo, S. Moreno-Tejera, and M. Silva-Pérez. 2017. Economical and environmental analysis of thermal and photovoltaic solar energy as source of heat for industrial processes. AIP Conference Proceedings 1850(1):180005.
  • Radwan, A., M. Ahmed, and S. Ookawara. 2016.Performance enhancement of concentrated photovoltaic systems using a microchannel heat sink with nanofluids. Energy Conversion and Management 119:289–303. doi:10.1016/j.enconman.2016.04.045.
  • Razykov, T. M., C. S. Ferekides, D. Morel, E. Stefanakos, H. S. Ullal, and H. M. Upadhyaya. 2011. Solar photovoltaic electricity: Current status and future prospects. Solar Energy 85(8):1580–608. doi:10.1016/j.solener.2010.12.002.
  • Royne, A., C. J. Dey, and D. R. Mills. 2005. Cooling of photovoltaic cells under concentrated illumination: A critical review. Solar Energy Materials and Solar Cells 86(4):451–83. doi:10.1016/j.solmat.2004.09.003.
  • Sangeetha, M., S. Manigandan, B. Ashok, K. Brindhadevi, and A. Pugazhendhi. 2021. Experimental investigation of nanofluid based photovoltaic thermal (PV/T) system for superior electrical efficiency and hydrogen production. Fuel 286:119422. doi:10.1016/j.fuel.2020.119422.
  • Sangeetha, M., S. Manigandan, M. T. Chaichan, and V. Kumar. 2020. Progress of MWCNT, Al2O3, and CuO with water in enhancing the photovoltaic thermal system. International Journal of Energy Research 44(2):821–32. doi:10.1002/er.4905.
  • Sardarabadi, M., M. Hosseinzadeh, A. Kazemian, and M. Passandideh-Fard. 2017.Experimental investigation of the effects of using metal-oxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints. Energy 138: 682695. doi: 10.1016/j.energy.2017.07.046.
  • Sardarabadi, M., and M. Passandideh-Fard. 2016. Experimental and numerical study of metal-oxides/water nanofluids as coolant in photovoltaic thermal systems (PVT). Solar Energy Materials and Solar Cells 157:533–42. doi:10.1016/j.solmat.2016.07.008.
  • Sarode, H. A., D. P. Barai, B. A. Bhanvase, R. P. Ugwekar, and V. Saharan. 2020.Investigation on preparation of graphene oxide-CuO nanocomposite based nanofluids with the aid of ultrasound assisted method for intensified heat transfer properties. Materials Chemistry and Physics 251:123102. doi: 10.1016/j.matchemphys.2020.123102.
  • Sözen, A., H. I. Variyenli, M. B. Özdemir, and M. Gürü. 2017. Upgrading the thermal performance of parallel and cross-flow concentric tube heat exchangers using MgO nanofluid. Heat Transfer Engineering 48(5):419–434. doi:10.1615/HeatTransRes.2016011522.
  • Syahputra, R., and I. Soesanti. 2021.Renewable energy systems based on micro-hydro and solar photovoltaic for rural areas: A case study in Yogyakarta, Indonesia. Energy Reports 7:472–90. doi:10.1016/j.egyr.2021.01.015.
  • Yahya, S., A. Rezaei, and B. Aghel. 2021. Forecasting of water thermal conductivity enhancement by adding nano-sized alumina particles. Journal of Thermal Analysis and Calorimetry 145(4):1791–800. January. doi:10.1007/s10973-020-10452-0.
  • Zhu, L., R. F. Boehm, Y. Wang, C. Halford, and Y. Sun. 2011. Water immersion cooling of PV cells in a high concentration system. Solar Energy Materials and Solar Cells 95(2):538–45. doi:10.1016/j.solmat.2010.08.037.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.