222
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Solar photovoltaic power forecasting for microgrid energy management system using an ensemble forecasting strategy

ORCID Icon, , &
Pages 10045-10070 | Received 20 Dec 2021, Accepted 03 Oct 2022, Published online: 12 Nov 2022

References

  • Ahmed, R., V. Sreeram, Y. Mishra, and M.D. Arif. 2020. A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization. Renewable and Sustainable Energy Reviews 124: 109792.doi: 10.1016/j.rser.2020.109792
  • Aljarah, I., H. Faris, and S. Mirjalili. 2018. Optimizing connection weights in neural networks using the whale optimization algorithm. Soft Computing 22 (1):1–15. doi:10.1007/s00500-016-2442-1.
  • Asrari, A., T.X. Wu, and B. Ramos. 2017. A hybrid algorithm for short-term solar power prediction—sunshine state case study. IEEE Transactions on Sustainable Energy 8 (2):582–91. doi:10.1109/TSTE.2016.2613962.
  • Bacher, P., H. Madsen, and H.A. Nielsen. 2009. Online short-term solar power forecasting. Solar Energy 83 (10):1772–83. doi:10.1016/j.solener.2009.05.016.
  • Behera, M.K., I. Majumder, and N. Nayak. 2018. Solar photovoltaic power forecasting using optimized modified extreme learning machine technique. Engineering Science and Technology, an International Journal 21 (3):428–38. doi:10.1016/j.jestch.2018.04.013.
  • Behera, M.K., and N. Nayak. 2020. A comparative study on short-term PV power forecasting using decomposition based optimized extreme learning machine algorithm. Engineering Science and Technology, an International Journal 23 (1):156–67. doi:10.1016/j.jestch.2019.03.006.
  • Bessa, R.J., A. Trindade, C.S.P. Silva, and V. Miranda. 2015. Probabilistic solar power forecasting in smart grids using distributed information. International Journal of Electrical Power & Energy Systems 72: 16–23.doi: 10.1016/j.ijepes.2015.02.006
  • Bidram, A., and A. Davoudi. 2012. Hierarchical structure of microgrids control system. IEEE Transactions on Smart Grid 3 (4):1963–76. doi:10.1109/TSG.2012.2197425.
  • Bouzerdoum, M., A. Mellit, and A. Massi Pavan. 2013. A hybrid model (SARIMA–SVM) for short-term power forecasting of a small-scale grid-connected photovoltaic plant. Solar Energy 98:226–35.
  • Buwei, W., C. Jianfeng, W. Bo, F. Shuanglei. 2018. A solar power prediction using support vector machines based on multi-source data fusion. Paper presented at: 2018 International Conference on Power System Technology (POWERCON), Guangzhou, China; 6-8 Nov.
  • Chow, S.K.H., E.W.M. Lee, and L. DHW. 2012. Short-term prediction of photovoltaic energy generation by intelligent approach. Energy and Buildings 55: 660–67.doi: 10.1016/j.enbuild.2012.08.011
  • Dash, D.R., P.K. Dash, and R. Bisoi. 2021. Short term solar power forecasting using hybrid minimum variance expanded RVFLN and sine-cosine levy flight PSO algorithm. Renewable Energy 174: 513–37.doi: 10.1016/j.renene.2021.04.088
  • Ding, M., L. Wang, and R. Bi. 2011. An ANN-based approach for forecasting the power output of photovoltaic system. Procedia Environmental Sciences 11: 1308–15.doi: 10.1016/j.proenv.2011.12.196
  • El Hendouzi, A., and A. Bourouhou. 2020. Solar photovoltaic power forecasting. Journal of Electrical and Computer Engineering 2020: 8819925.doi: 10.1155/2020/8819925
  • Eseye, A.T., M. Lehtonen, T. Tukia, S. Uimonen, and R.J. Millar. 2019. Adaptive predictor subset selection strategy for enhanced forecasting of distributed PV power generation. IEEE Access 7:90652–65.
  • Eseye, A.T., J. Zhang, and D. Zheng. 2018. Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSO-SVM model based on SCADA and meteorological information. Renewable Energy 118:357–67.
  • Guo, K., X. Cheng, H. Ge, J. Shi. 2020. Short-term photovoltaic power forecasting based on PSO-BP neural network. Paper presented at: 2020 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia), Weihai, China, 13-15 July.
  • Hassan, S., A. Khosravi, and J. Jaafar. 2015. Examining performance of aggregation algorithms for neural network-based electricity demand forecasting. International Journal of Electrical Power & Energy Systems 64: 1098–105.doi: 10.1016/j.ijepes.2014.08.025
  • Hu, K., S. Cao, L. Wang, W. Li, and M. Lv. 2018. A new ultra-short-term photovoltaic power prediction model based on ground-based cloud images. Journal of Cleaner Production 200: 731–45.doi: 10.1016/j.jclepro.2018.07.311
  • Huertas Tato, J., and M. Centeno Brito. 2019. Using smart persistence and random forests to predict photovoltaic energy production. Energies 12 (1):100. doi:10.3390/en12010100.
  • Jung, Y., J. Jung, B. Kim, and S. Han. 2020. Long short-term memory recurrent neural network for modeling temporal patterns in long-term power forecasting for solar PV facilities: Case study of South Korea. Journal of Cleaner Production 250: 119476.doi: 10.1016/j.jclepro.2019.119476
  • Kanwal, S., B. Khan, S.M. Ali, C.A. Mehmood, M.Q. Rauf. 2018. Support vector machine and gaussian process regression based modeling for photovoltaic power prediction. Paper presented at: 2018 International Conference on Frontiers of Information Technology (FIT), Islamabad, Pakistan, 17–19 Dec.
  • Kaur, S., L.K. Awasthi, A.L. Sangal, and G. Dhiman. 2020. Tunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Engineering Applications of Artificial Intelligence 90: 103541.doi: 10.1016/j.engappai.2020.103541
  • Korkmaz, D. 2021. SolarNet: A hybrid reliable model based on convolutional neural network and variational mode decomposition for hourly photovoltaic power forecasting. Applied Energy 300: 117410.doi: 10.1016/j.apenergy.2021.117410
  • Kothona, D., I.P. Panapakidis, and G.C. Christoforidis. 2022. A novel hybrid ensemble LSTM-FFNN forecasting model for very short-term and short-term PV generation forecasting. IET Renewable Power Generation 16 (1):3–18. doi:10.1049/rpg2.12209.
  • Li, Y., Y. He, Y. Su, and L. Shu. 2016. Forecasting the daily power output of a grid-connected photovoltaic system based on multivariate adaptive regression splines. Applied Energy 180: 392–401.doi: 10.1016/j.apenergy.2016.07.052
  • Lin, G.Q., L.L. Li, M.L. Tseng, H.M. Liu, D.D. Yuan, and R.R. Tan. 2020. An improved moth-flame optimization algorithm for support vector machine prediction of photovoltaic power generation. Journal of Cleaner Production 253: 119966.doi: 10.1016/j.jclepro.2020.119966
  • Lin, K.P., and P.F. Pai. 2016. Solar power output forecasting using evolutionary seasonal decomposition least-square support vector regression. Journal of Cleaner Production 134: 456–62.doi: 10.1016/j.jclepro.2015.08.099
  • Lin, P., Z. Peng, Y. Lai, S. Cheng, Z. Chen, and L. Wu. 2018. Short-term power prediction for photovoltaic power plants using a hybrid improved Kmeans-GRA-Elman model based on multivariate meteorological factors and historical power datasets. Energy Conversion and Management 177: 704–17.doi: 10.1016/j.enconman.2018.10.015
  • Li, Y., Y. Su, and L. Shu. 2014. An ARMAX model for forecasting the power output of a grid connected photovoltaic system. Renewable Energy 66: 78–89.doi: 10.1016/j.renene.2013.11.067
  • Liu, Z.F., L.L. Li, M.L. Tseng, and M.K. Lim. 2020. Prediction short-term photovoltaic power using improved chicken swarm optimizer - extreme learning machine model. Journal of Cleaner Production 248: 119272.doi: 10.1016/j.jclepro.2019.119272
  • Liu, Z.F., S.F. Luo, M.L. Tseng, H.M. Liu, L. Li, and A.H.M. Mashud. 2021. Short-term photovoltaic power prediction on modal reconstruction: A novel hybrid model approach. Sustainable Energy Technologies and Assessments 45: 101048.doi: 10.1016/j.seta.2021.101048
  • Li, L.L., S.Y. Wen, M.L. Tseng, and C.S. Wang. 2019. Renewable energy prediction: A novel short-term prediction model of photovoltaic output power. Journal of Cleaner Production 228: 359–75.doi: 10.1016/j.jclepro.2019.04.331
  • Louzazni, M., H. Mosalam, A. Khouya, and K. Amechnoue. 2020. A non-linear auto-regressive exogenous method to forecast the photovoltaic power output. Sustainable Energy Technologies and Assessments 38: 100670.doi: 10.1016/j.seta.2020.100670
  • Luo, X., and D. Zhang. 2022. An adaptive deep learning framework for day-ahead forecasting of photovoltaic power generation. Sustainable Energy Technologies and Assessments 52: 102326.doi: 10.1016/j.seta.2022.102326
  • Luo, X., D. Zhang, and X. Zhu. 2021. Deep learning based forecasting of photovoltaic power generation by incorporating domain knowledge. Energy 225: 120240.doi: 10.1016/j.energy.2021.120240
  • Malvoni, M., M.G. De Giorgi, and P.M. Congedo. 2016. Photovoltaic forecast based on hybrid PCA–LSSVM using dimensionality reducted data. Neurocomputing 211:72–83.
  • Massidda, L., and M. Marrocu. 2017. Use of multilinear adaptive regression splines and numerical weather prediction to forecast the power output of a PV plant in Borkum, Germany. Solar Energy 146: 141–49.doi: 10.1016/j.solener.2017.02.007
  • Mirjalili, S. 2015. How effective is the Grey Wolf optimizer in training multilayer perceptrons. Applied Intelligence 43 (1):150–61. doi:10.1007/s10489-014-0645-7.
  • Mirjalili, S., and A. Lewis. 2016. The whale optimization algorithm. Advances in Engineering Software 95: 51–67.doi: 10.1016/j.advengsoft.2016.01.008
  • Monteiro, C., T. Santos, J.L.A. Fernandez, I.J. Ramirez-Rosado, and O.M.S. Terreros. 2013. Short-term power forecasting model for photovoltaic plants based on historical similarity. Energies 6 (5). doi:10.3390/en6052624.
  • Niu, D., K. Wang, L. Sun, J. Wu, and X. Xu. 2020. Short-term photovoltaic power generation forecasting based on random forest feature selection and CEEMD: A case study. Applied Soft Computing 93: 106389.doi: 10.1016/j.asoc.2020.106389
  • Ni, Q., S. Zhuang, H. Sheng, G. Kang, and J. Xiao. 2017. An ensemble prediction intervals approach for short-term PV power forecasting. Solar Energy 155: 1072–83.doi: 10.1016/j.solener.2017.07.052
  • Pan, M., C. Li, R. Gao. 2020. Photovoltaic power forecasting based on a support vector machine with improved ant colony optimization. Journal of Cleaner Production 277:123948. doi:10.1016/j.jclepro.2020.123948.
  • Qu, J., Z. Qian, and Y. Pei. 2021. Day-ahead hourly photovoltaic power forecasting using attention-based CNN-LSTM neural network embedded with multiple relevant and target variables prediction pattern. Energy 232: 120996.doi: 10.1016/j.energy.2021.120996
  • Raza, M.Q., N. Mithulananthan, J. Li, K.Y. Lee, and H.B. Gooi. 2019. An ensemble strategy for day-ahead forecast of PV output power in smart grids. IEEE Transactions on Industrial Informatics 15 (8):4624–34. doi:10.1109/TII.2018.2882598.
  • Raza, M.Q., M. Nadarajah, and C. Ekanayake. 2017. Demand forecast of PV integrated bioclimatic buildings using ensemble strategy. Applied Energy 208: 1626–38.doi: 10.1016/j.apenergy.2017.08.192
  • Sabri, N.M., and M. El Hassouni. 2022. Accurate photovoltaic power prediction models based on deep convolutional neural networks and gated recurrent units. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 44 (3):6303–20. doi:10.1080/15567036.2022.2097751.
  • Seyedmahmoudian, M., E. Jamei, G.S. Thirunavukkarasu. 2018. Short-term forecasting of the output power of a building-integrated photovoltaic system using a metaheuristic approach. Energies. 11(5):1260. doi:10.3390/en11051260.
  • Shang, C., and P. Wei. 2018. Enhanced support vector regression-based forecast engine to predict solar power output. Renewable Energy 127: 269–83.doi: 10.1016/j.renene.2018.04.067
  • Sheng, H., J. Xiao, Y. Cheng, Q. Ni, and S. Wang. 2018. Short-term solar power forecasting based on weighted gaussian process regression. IEEE Transactions on Industrial Electronics 65 (1):300–08. doi:10.1109/TIE.2017.2714127.
  • Shi, J., W. Lee, Y. Liu, Y. Yang, and P. Wang. 2012. Forecasting power output of photovoltaic systems based on weather classification and support vector machines. IEEE Transactions on Industry Applications 48 (3):1064–69. doi:10.1109/TIA.2012.2190816.
  • Talaat, M., T. Said, M.A. Essa, and A.Y. Hatata. 2022. Integrated MFFNN-MVO approach for PV solar power forecasting considering thermal effects and environmental conditions. International Journal of Electrical Power & Energy Systems 135: 107570.doi: 10.1016/j.ijepes.2021.107570
  • VanDeventer, W., E. Jamei, G.S. Thirunavukkarasu. 2019. Short-term PV power forecasting using hybrid GASVM technique. Renewable Energy 140:367–79. doi:10.1016/j.renene.2019.02.087.
  • Wang, Y., Q. Yang, H. Xue, Y. Mi, and Y. Tu. 2022. Ultra-short-term PV power prediction model based on HP-OVMD and enhanced emotional neural network. IET Renewable Power Generation 16 (11):2233–47. doi:10.1049/rpg2.12514.
  • Wen, S., C. Zhang, H. Lan, Y. Xu, Y. Tang, and Y. Huang. 2021. A hybrid ensemble model for interval prediction of solar power output in ship onboard power systems. IEEE Transactions on Sustainable Energy 12 (1):14–24. doi:10.1109/TSTE.2019.2963270.
  • Wu, X., C.S. Lai, C. Bai, L.L. Lai, Q. Zhang, and B. Liu. 2020. Optimal kernel elm and variational mode decomposition for probabilistic PV power prediction. Energies 13 (14). doi:10.3390/en13143592.
  • Xiang, L., Z. Deng, and A. Hu. 2019. Forecasting short-term wind speed based on IEWT-LSSVM model optimized by bird swarm algorithm. IEEE Access 7: 59333–45.doi: 10.1109/ACCESS.2019.2914251
  • Xun, T., S.H. Lei, X.C. Ding, K. Chen, K. Huang, and Y.X. Nie. 2020. Photovoltaic power forecasting method based on adaptive classification strategy and HO-SVR algorithm. Energy Reports 6: 921–28.doi: 10.1016/j.egyr.2020.11.108
  • Yang, Z., M. Mourshed, K. Liu, X. Xu, and S. Feng. 2020. A novel competitive swarm optimized RBF neural network model for short-term solar power generation forecasting. Neurocomputing 397: 415–21.doi: 10.1016/j.neucom.2019.09.110
  • Zhen, H., D. Niu, K. Wang, Y. Shi, Z. Ji, and X. Xu. 2021. Photovoltaic power forecasting based on GA improved Bi-LSTM in microgrid without meteorological information. Energy 231: 120908.doi: 10.1016/j.energy.2021.120908

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.