176
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Sulfonated sodium tannin and AM/AMPS copolymer complex as an anti-temperature viscosity reducer for water-based drilling fluid

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 9827-9843 | Received 01 Jul 2022, Accepted 08 Oct 2022, Published online: 11 Nov 2022

References

  • Abdo, J., and M. D. Haneef. 2013. Clay nanoparticles modified drilling fluids for drilling of deep hydrocarbon wells. Applied Clay Science 86:76–82. doi:10.1016/j.clay.2013.10.017.
  • Al-Hameedi, A. T., H. H. Alkinani, S. Dunn-Norman, M. M. Alkhamis, E. Salem, R. A. Mutar, and E. Salem. 2020. Proposing a new biodegradable thinner and fluid loss control agent for water-based drilling fluid applications. International Journal of Environmental Science and Technology 17 (8):3621–32. doi:10.1007/s13762-020-02650-y.
  • Al-Hashimi, W. H. 2018. A new alternative thinner in the drilling fluid system. Journal of Petroleum Research and Studies 8 (1):43–62. doi:10.52716/JPRS.V8I1.218.
  • An, Y. X., G. C. Jiang, Y. R. Qi, X. B. Huang, and H. Shi. 2016. High-performance shale plugging agent based on chemically modified graphene. Journal of Natural Gas Science and Engineering 32:347–55. doi:10.1016/j.jngse.2016.04.048.
  • Arbenz, A., and L. Averous. 2015. Chemical modification of tannins to elaborate aromatic biobased macromolecular architectures. Green Chemistry 17 (5):2626–46. doi:10.1039/c5gc00282f.
  • Au, P. I., P. Pillai, and Y. K. Leong. 2015. Ageing and collapse of bentonite gels - effects of Mg(II), Ca(II) and Ba(II) ions. Applied Clay Science 114:141–50. doi:10.1016/j.clay.2015.05.018.
  • Barry, M. M., Y. Jung, J. K. Lee, T. X. Phuoc, and M. K. Chyu. 2015. Fluid filtration and rheological properties of nanoparticle additive and intercalated clay hybrid bentonite drilling fluids. Journal of Petroleum Science and Engineering 127:338–46. doi:10.1016/j.petrol.2015.01.012.
  • Beg, M., H. Kesarwani, and S. Sharma, 2019. Effect of CuO and ZnO nanoparticles on efficacy of poly 4-styrenesulfonic acid-co-maleic acid sodium salt for controlling HPHT filtration. Abu Dhabi International Petroleum Exhibition & Conference. doi: 10.2118/197703-MS.
  • Huang, W., C. Zhao, Z. Qiu, Y.-K. Leong, H. Zhong, and J. Cao. 2015. Synthesis, characterization and evaluation of a quadripolymer with low molecular weight as a water based drilling fluid viscosity reducer at high temperature (245 °C). Polymer International 64 (10):1352–60. doi:10.1002/pi.4923.
  • Ismail, A. R., M. N. A. Mohd Norddin, N. A. S. Latefi, J. O. Oseh, I. Ismail, A. O. Gbadamosi, and A. J. Agi. 2020. Evaluation of a naturally derived tannin extracts biopolymer additive in drilling muds for high-temperature well applications. Journal of Petroleum Exploration and Production Technology 10 (2):623–39. doi:10.1007/s13202-019-0717-7.
  • Kania, D., R. Yunus, R. Omar, S. A. Rashid, B. M. Jan, and N. Arsanjani. 2018. Nonionic polyol esters as thinner and lubricity enhancer for synthetic-based drilling fluids. Journal of Molecular Liquids 266:846–55. doi:10.1016/j.molliq.2018.07.014.
  • Ma, J., Y. An, and P. Yu. 2019. Core–shell structure acrylamide copolymer grafted on nano-silica surface as an anti-calcium and anti-temperature fluid loss agent. Journal of Materials Science 54 (7):5927–41. doi:10.1007/s10853-018-03239-0.
  • Mao, H., Y. Yang, H. Zhang, J. Zheng, and Y. Zhong, 2020. Conceptual design and methodology for rheological control of water-based drilling fluids in ultra-high temperature and ultra-high pressure drilling applications. Journal of Petroleum Science and Engineering. 188 106884 . doi:10.1016/j.petrol.2019.106884.
  • Ma, J.Y., B.R. Xia, P.Z. Yu, and Y.X. An. 2020. Comparison of an emulsion- and solution-prepared acrylamide/AMPS copolymer for a fluid loss agent in drilling fluid. Acs Omega 5 (22):12892–904. doi:10.1021/acsomega.0c00665.
  • Mohamad Ibrahim, M. N., S. B. Chuah, and C. P. Y. 2012. Tin-tannin-lignosulfonate complex: An improved lignosulfonate-based drilling fluid thinner. Jurnal Teknologi 38 (1). doi:10.11113/jt.v38.506.
  • Moslemizadeh, A., and S. R. Shadizadeh. 2017. A natural dye in water-based drilling fluids: Swelling inhibitive characteristic and side effects. Petroleum 3 (3):355–66. doi:10.1016/j.petlm.2016.08.007.
  • Oseh, J. O., M. N. A. M. Norddin, I. Ismail, A. R. Ismail, A. O. Gbadamosi, and A. Agi. 2020. Effect of the surface charge of entrapped polypropylene at nanosilica-composite on cuttings transport capacity of water-based muds. Applied Nanoscience 10 (1):61–82. doi:10.1007/s13204-019-01063-9.
  • Oseh, J. O., M. N. A. M. Norrdin, F. Farooqi, R. A. Ismail, I. Ismail, A. O. Gbadamosi, and A. J. Agi. 2019. Experimental investigation of the effect of henna leaf extracts on cuttings transportation in highly deviated and horizontal wells. Journal of Petroleum Exploration and Production Technology 9 (3):2387–404. doi:10.1007/s13202-019-0631-z.
  • Perez, M. A., R. Rengifo, C. Pereira, and V. Hernandez. 2017. Dividivi tannins: An ecological product for water-based drilling fluids. Environment Development and Sustainability 19 (5):1815–29. doi:10.1007/s10668-016-9829-0.
  • Perween, S., M. Beg, R. Shankar, S. Sharma, and A. Ranjan. 2018. Effect of zinc titanate nanoparticles on rheological and filtration properties of water based drilling fluids. Journal of Petroleum Science and Engineering 170:844–57. doi:10.1016/j.petrol.2018.07.006.
  • Srivastava, V., M. Beg, S. Sharma, and A. K. Choubey. 2021. Application of manganese oxide nanoparticles synthesized via green route for improved performance of water-based drilling fluids. Applied Nanoscience 11 (8):2247–60. doi:10.1007/s13204-021-01956-8.
  • Wang, F. H., X. C. Tan, R. H. Wang, M. B. Sun, L. Wang, and J. H. Liu. 2012. High temperature and high pressure rheological properties of high-density water-based drilling fluids for deep wells. Petroleum Science 9 (3):354–62. doi:10.1007/s12182-012-0219-4.
  • Zhao, X., Q. S. Dai, Y. Pan, S. C. Yang, W. F. Marcellin, W. Li, and H. Y. Zhang. 2022. Development of water-based drilling fluid used in unconsolidated sandstone reservoir. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 44 (1):1078–91. doi:10.1080/15567036.2019.1639848.
  • Zhu, W. X., X. H. Zheng, J. J. Shi, and Y. F. Wang. 2021. A high-temperature resistant colloid gas aphron drilling fluid system prepared by using a novel graft copolymer xanthan gum-AA/AM/AMPS. Journal of Petroleum Science and Engineering 205 108821 . doi:10.1016/j.petrol.2021.108821.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.