211
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Co-pyrolysis of food waste with coconut fiber: thermogravimetric analyzes and hydrogen yield optimization

ORCID Icon, , , , ORCID Icon, , , & show all
Pages 10230-10247 | Received 15 Aug 2022, Accepted 17 Oct 2022, Published online: 13 Nov 2022

References

  • Abdel-Shafy, H. I., and M. S. M. Mansour. 2018. Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egyptian Journal of Petroleum 27 (4):1275–90. doi:10.1016/j.ejpe.2018.07.003.
  • Abnisa, F., and W. M. A. W. Daud. 2014. A review on co-pyrolysis of biomass: An optional technique to obtain a high-grade pyrolysis oil. Energy Conversion and Management 87:71–85. doi: 10.1016/j.enconman.2014.07.007.
  • Adewole, B. Z., B. S. Adeboye, B. O. Malomo, S. O. Obayopo, S. A. Mamuru, and A. A. Asere. 2020. CO-pyrolysis of bituminous coal and coconut shell blends via thermogravimetric analysis. Energy Sources Part A-Recovery Utilization and Environmental Effects 1-14. doi: 10.1080/15567036.2020.1798567.
  • Ahmed, M. H. M., N. Batalha, H. M. D. Mahmudul, G. Perkins, and M. Konarova. 2020. A review on advanced catalytic co -pyrolysis of biomass and hydrogen -rich feedstock: Insights into synergistic effect, catalyst development and reaction mechanism. Bioresource Technology 310:123457. doi: 10.1016/j.biortech.2020.123457.
  • Al-Rumaihi, A., P. Parthasarathy, A. Fernandez, T. Al-Ansari, H. R. Mackey, R. Rodriguez, G. Mazza, and G. McKay. 2021. Thermal degradation characteristics and kinetic study of camel manure pyrolysis. Journal of Environmental Chemical Engineering 9 (5):106071. doi:10.1016/j.jece.2021.106071.
  • Anwar, Z., M. Gulfraz, and M. Irshad. 2014. Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review. Journal of Radiation Research & Applied Sciences 7 (2):163–73. doi:10.1016/j.jrras.2014.02.003.
  • Ayilara, M. S., O. S. Olanrewaju, O. O. Babalola, and O. Odeyemi. 2020. Waste management through composting: Challenges and potentials. Sustainability 12 (11):4456. doi:10.3390/su12114456.
  • Brook, R. J., and G. C. Arnold. 2018. Applied regression analysis and experimental design. Boca Raton: CRC Press. doi:10.1201/9781315137674.
  • Cai, J., D. Xu, Z. Dong, X. Yu, Y. Yang, S. W. Banks, and A. V. Bridgwater. 2018. Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: Case study of corn stalk. Renewable and Sustainable Energy Reviews 82:2705–15. doi: 10.1016/j.rser.2017.09.113.
  • Chen, Z. G., S. Liu, Y. Qiao, W. X. Wang, Q. Q. Sun, K. Zhang, J. B. Zhou, J. Yu, and M. H. Xu. 2016. Gasification of torrefied kitchen waste: Release of sodium and its influence on the formation of gasification products. Asia-Pacific Journal of Chemical Engineering 11 (5):785–94. doi:10.1002/apj.2011.
  • Chen, C., X. Ma, and Y. He. 2012. Co-pyrolysis characteristics of microalgae Chlorella vulgaris and coal through TGA. Bioresource Technology 117:264–73.
  • Chen, H. P., Y. P. Xie, W. Chen, M. W. Xia, K. X. Li, Z. Q. Chen, Y. Q. Chen, and H. P. Yang. 2019. Investigation on co-pyrolysis of lignocellulosic biomass and amino acids using TG-FTIR and Py-GC/MS. Energy Conversion and Management 196:320–29. doi: 10.1016/j.enconman.2019.06.010.
  • Echegaray, M., D. Z. Garcia, G. Mazza, and R. Rodriguez. 2019. Air-steam gasification of five regional lignocellulosic wastes: Exergetic evaluation. Sustainable Energy Technologies and Assessments 31:115–23. doi: 10.1016/j.seta.2018.12.015.
  • EEA. 2009. Diverting waste from landfill - effectiveness of waste-management policies in the European Union.
  • Elliott, A. Y. 2011. Comprehensive biotechnology (Second edition), 731–955. Comprehensive Biotechnology.
  • Fang, X., L. Jia, and L. Yin. 2013. A weighted average global process model based on two− stage kinetic scheme for biomass combustion. Biomass & Bioenergy 48:43–50. doi: 10.1016/j.biombioe.2012.11.011.
  • Fernandez, A., C. Palacios, M. Echegaray, G. Mazza, and R. Rodriguez. 2018. Pyrolysis and combustion of regional agro-industrial wastes: Thermal behavior and kinetic parameters comparison. Combustion Science and Technology 190 (1):114–35. doi:10.1080/00102202.2017.1377701.
  • Frisa-Rubio, A., C. González-Niño, P. Royo, N. García-Polanco, D. Martínez-Hernández, L. Royo-Pascual, S. Fiesser, E. Žagar, and T. García-Armingol. 2021. Chemical recycling of plastics assisted by microwave multi-frequency heating. Cleaner Engineering and Technology 5:100297. doi: 10.1016/j.clet.2021.100297.
  • Gadkari, S., B. Fidalgo, and S. Gu. 2017. Numerical investigation of microwave-assisted pyrolysis of lignin. Fuel Processing Technology 156:473–84. doi: 10.1016/j.fuproc.2016.10.012.
  • Grycová, B., I. Koutník, A. Pryszcz, and M. Kaloč. 2016. Application of pyrolysis process in processing of mixed food wastes. Polish Journal of Chemical Technology 18 (1):19–23. doi:10.1515/pjct-2016-0004.
  • Huang, D., W. Shi, L. Han, K. Sun, G. Chen, W. Jian-Xiong, G. Xu, Y. Bi, Z. Wang, and W. Xiao. 2015. Optimization of vacuum belt drying process of Gardeniae Fructus in Reduning injection by Box-Behnken design-response surface methodology. Zhongguo Zhong Yao Za Zhi= Zhongguo Zhongyao Zazhi= China Journal of Chinese Materia Medica 40 (12):2330–35.
  • Hu, M., Z. Chen, S. Wang, D. Guo, C. Ma, Y. Zhou, J. Chen, M. Laghari, S. Fazal, and B. Xiao. 2016. Thermogravimetric kinetics of lignocellulosic biomass slow pyrolysis using distributed activation energy model, Fraser–Suzuki deconvolution, and iso-conversional method. Energy Conversion and Management 118:1–11. doi: 10.1016/j.enconman.2016.03.058.
  • IPCC. 2006. Guidelines for national greenhouse gas inventories, prepared by the national greenhouse gas inventories programme.
  • Isha, R., and P. Williams. 2011. Pyrolysis-gasification of agriculture biomass wastes for hydrogen production. Journal of the Energy Institute 84 (2):80–87. doi:10.1179/014426011X12968328625432.
  • Jahirul, M. I., M. G. Rasul, A. A. Chowdhury, and N. Ashwath. 2012. Biofuels production through biomass pyrolysis-A technological review. Energies 5 (12):4952–5001. doi:10.3390/en5124952.
  • Jingli, W., C. Tianju, and L. Xitao. 2014. Research on kinetic analysis of typical municipal solid wastes (MSW) pyrolysis. Journal of Fuel Chemistry and Technology 42 (1):43–47.
  • Jin, C., S. Sun, D. Yang, W. Sheng, Y. Ma, W. He, and G. Li. 2021. Anaerobic digestion: An alternative resource treatment option for food waste in China. The Science of the Total Environment 779:146397. doi: 10.1016/j.scitotenv.2021.146397.
  • Jun, Z., W. Shuzhong, W. Zhiqiang, M. Haiyu, and C. Lin. 2017. Hydrogen-rich syngas produced from the co-pyrolysis of municipal solid waste and wheat straw. International Journal of Hydrogen Energy 42 (31):19701–08. doi:10.1016/j.ijhydene.2017.06.166.
  • Li, H., X. H. Li, L. Liu, K. Q. Li, X. H. Wang, and H. X. Li. 2016. Experimental study of microwave-assisted pyrolysis of rice straw for hydrogen production. International Journal of Hydrogen Energy 41 (4):2263–67. doi:10.1016/j.ijhydene.2015.11.137.
  • Liu, J. J., Q. D. Hou, M. T. Ju, P. Ji, Q. M. Sun, and W. Z. Li. 2020. Biomass pyrolysis technology by catalytic fast pyrolysis, catalytic co-pyrolysis and microwave-assisted pyrolysis: A review. Catalysts 10 (7):742. doi:10.3390/catal10070742.
  • Liu, Y., W. Sun, and J. Liu. 2017. Greenhouse gas emissions from different municipal solid waste management scenarios in China: Based on carbon and energy flow analysis. Waste Management 68:653–61. doi: 10.1016/j.wasman.2017.06.020.
  • Longhurst, P. J., D. Tompkins, S. Pollard, R. L. Hough, B. Chambers, P. Gale, S. Tyrrel, R. Villa, M. Taylor, and S. Wu. 2019. Risk assessments for quality-assured, source-segregated composts and anaerobic digestates for a circular bioeconomy in the UK. Environment International 127:253–66. doi: 10.1016/j.envint.2019.03.044.
  • Lu, K.-M., W.-J. Lee, W.-H. Chen, and T.-C. Lin. 2013. Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends. Applied Energy 105:57–65. doi: 10.1016/j.apenergy.2012.12.050.
  • Lv, X., J. Xiao, L. Shen, and Y. Zhou. 2016. Experimental study on the optimization of parameters during biomass pyrolysis and char gasification for hydrogen-rich gas. International Journal of Hydrogen Energy 41 (47):21913–25. doi:10.1016/j.ijhydene.2016.09.200.
  • Martins, J. P. G., C. Setter, C. H. Ataíde, T. J. P. de Oliveira, and Z. M. Magriotis. 2021. Study of pequi peel pyrolysis: Thermal decomposition analysis and product characterization. Biomass & Bioenergy 149:106095. doi: 10.1016/j.biombioe.2021.106095.
  • Mlonka-Mędrala, A., A. Magdziarz, T. Dziok, M. Sieradzka, and W. Nowak. 2019. Laboratory studies on the influence of biomass particle size on pyrolysis and combustion using TG GC/MS. Fuel 252:635–45. doi: 10.1016/j.fuel.2019.04.091.
  • Mokhta, Z. M., M. Y. Ong, B. Salman, S. Nomanbhay, S. F. Salleh, K. W. Chew, P.-L. Show, and W.-H. Chen. 2020. Simulation studies on microwave-assisted pyrolysis of biomass for bioenergy production with special attention on waveguide number and location. Energy 190:116474. doi: 10.1016/j.energy.2019.116474.
  • Mong, G. R., C. T. Chong, W. W. F. Chong, J. H. Ng, H. C. Ong, V. Ashokkumar, M. V. Tran, S. Karmakar, B. H. H. Goh, and M. F. M. Yasin. 2022. Progress and challenges in sustainable pyrolysis technology: Reactors, feedstocks and products. Fuel 324:124777. doi: 10.1016/j.fuel.2022.124777.
  • Motasemi, F., and M. T. Afzal. 2013. A review on the microwave-assisted pyrolysis technique. Renewable and Sustainable Energy Reviews 28:317–30. doi: 10.1016/j.rser.2013.08.008.
  • Nair, K. P. 2010. The agronomy and economy of important tree crops of the developing world.
  • Nyambura, S. M., J. F. Wang, H. Li, X. B. Feng, X. J. Pan, B. H. Li, R. Ahmad, J. L. Xu, G. V. Bertrand, J. Ndiithi, et al. 2022. Microwave co-pyrolysis of kitchen food waste and rice straw for waste reduction and sustainable biohydrogen production: Thermo-kinetic analysis and evolved gas analysis. Sustainable Energy Technologies and Assessments 52:102072. doi: 10.1016/j.seta.2022.102072.
  • Park, C., N. Lee, J. Kim, and J. Lee. 2021. Co-pyrolysis of food waste and wood bark to produce hydrogen with minimizing pollutant emissions. Environmental Pollution 270:116045. doi: 10.1016/j.envpol.2020.116045.
  • Pickard, S., S. Daood, M. Pourkashanian, and W. Nimmo. 2013. Robust extension of the Coats–Redfern technique: Reviewing rapid and realiable reactivity analysis of complex fuels decomposing in inert and oxidizing thermogravimetric analysis atmospheres. Energy & Fuels 27 (5):2818–26. doi:10.1021/ef400477u.
  • Prasad, M. 2016. Environmental Materials and Waste 1–19. doi:10.1016/B978-0-12-803837-6.00001-9.
  • Said, M. M., C. F. Mhilu, and G. R. John. 2014. Thermal characteristics and kinetics of rice husk for pyrolysis process.
  • Shahbaz, M., S. Yusup, A. Inayat, D. O. Patrick, and A. Pratama. 2016. Application of response surface methodology to investigate the effect of different variables on conversion of palm kernel shell in steam gasification using coal bottom ash. Applied Energy 184:1306–15. doi: 10.1016/j.apenergy.2016.05.045.
  • Shariff, A., N. S. Mohamad Aziz, N. I. Ismail, and N. Abdullah. 2016. Corn cob as a potential feedstock for slow pyrolysis of biomass. Journal of Physical Science 27 (2):123–37. doi:10.21315/jps2016.27.2.9.
  • Shi, K., J. Yan, J. A. Menéndez, X. Luo, G. Yang, Y. Chen, E. Lester, and T. Wu. 2020. Production of H2-rich syngas from lignocellulosic biomass using microwave-assisted pyrolysis coupled with activated carbon enabled reforming. Frontiers in Chemistry 8:3. doi: 10.3389/fchem.2020.00003.
  • Shuttleworth, P., V. Budarin, M. Gronnow, J. H. Clark, and R. Luque. 2012. Low temperature microwave-assisted vs conventional pyrolysis of various biomass feedstocks. Journal of Natural Gas Chemistry 21 (3):270–74. doi:10.1016/S1003-9953(11)60364-2.
  • Skoulou, V., P. Manara, and A. Zabaniotou. 2012. H2 enriched fuels from co-pyrolysis of crude glycerol with biomass. Journal of Analytical and Applied Pyrolysis 97:198–204. doi: 10.1016/j.jaap.2012.05.011.
  • Song, Z., C. Jing, L. Yao, X. Zhao, W. Wang, Y. Mao, and C. Ma. 2016. Microwave drying performance of single-particle coal slime and energy consumption analyses. Fuel Processing Technology 143:69–78. doi: 10.1016/j.fuproc.2015.11.012.
  • Strasma, J. 1990. Methods of extracting representative samples of municipal solid waste for waste characterization studies.
  • Su, G., H. C. Ong, I. R. Fattah, Y. S. Ok, J.-H. Jang, and C.-T. Wang. 2021. State-of-the-art of the pyrolysis and co-pyrolysis of food waste: Progress and challenges. The Science of the Total Environment 809:151170. doi: 10.1016/j.scitotenv.2021.151170.
  • Suresh, A., A. Alagusundaram, P. S. Kumar, D.-V.N Vo, F. C. Christopher, B. Balaji, V. Viswanathan, and S. Sankar. 2021. Microwave pyrolysis of coal, biomass and plastic waste: A review. Environmental Chemistry Letters 19 (5):3609–29. doi:10.1007/s10311-021-01245-4.
  • Tang, Y., Q. Huang, K. Sun, Y. Chi, and J. Yan. 2018. Co-pyrolysis characteristics and kinetic analysis of organic food waste and plastic. Bioresource Technology 249:16–23. doi: 10.1016/j.biortech.2017.09.210.
  • Torres-Sciancalepore, R., A. Fernandez, D. Asensio, M. Riveros, M. P. Fabani, G. Fouga, R. Rodriguez, and G. Mazza. 2022. Kinetic and thermodynamic comparative study of quince bio-waste slow pyrolysis before and after sustainable recovery of pectin compounds. Energy Conversion and Management 252:115076. doi: 10.1016/j.enconman.2021.115076.
  • Wang, J., R. Ahmad, S. Mbugua Nyambura, X. Li, H. Li, R. He, B. Li, X. Pan, and J. Xu. 2022. Design and evaluation of coconut fiber bionic‐stripping device based on Lucanidae palate frictional characteristics. Journal of Food Process Engineering 45:e14068.
  • Wang, Z., L. Xie, K. Liu, J. Wang, H. Zhu, Q. Song, and X. Shu. 2019. Co-pyrolysis of sewage sludge and cotton stalks. Waste Management 89:430–38. doi: 10.1016/j.wasman.2019.04.033.
  • Wu, Y., X. Tian, X. Li, H. Yuan, and G. Liu. 2019. Characteristics, influencing factors, and environmental effects of plate waste at university canteens in Beijing, China. Resources, Conservation and Recycling 149:151–59. doi: 10.1016/j.resconrec.2019.05.022.
  • Xiao, R., W. Yang, X. Cong, K. Dong, J. Xu, D. Wang, and X. Yang. 2020. Thermogravimetric analysis and reaction kinetics of lignocellulosic biomass pyrolysis. Energy 201:117537. doi: 10.1016/j.energy.2020.117537.
  • Yang, H. P., R. Yan, H. P. Chen, D. H. Lee, and C. G. Zheng. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86 (12–13):1781–88. doi:10.1016/j.fuel.2006.12.013.
  • Yang, Q., H. W. Zhou, P. Bartocci, F. Fantozzi, O. Masek, F. A. Agblevor, Z. Y. Wei, H. P. Yang, H. P. Chen, X. Lu, et al. 2021. Prospective contributions of biomass pyrolysis to China’s 2050 carbon reduction and renewable energy goals. Nature Communications 12 (1). doi:10.1038/s41467-021-21868-z.
  • Zhang, H., G. Liu, L. Xue, J. Zuo, and H. Duan. 2020. Anaerobic digestion based waste-to-energy technologies can halve the climate impact of China’s fast-growing food waste by 2040. Journal of Cleaner Production 277:123490. doi: 10.1016/j.jclepro.2020.123490.
  • Zhu, J., Y. Yang, L. Yang, and Y. Zhu. 2018. High quality syngas produced from the co-pyrolysis of wet sewage sludge with sawdust. International Journal of Hydrogen Energy 43 (11):5463–72. doi:10.1016/j.ijhydene.2018.01.171.
  • Zi, W., Y. Chen, Y. Pan, Y. Zhang, Y. He, and Q. Wang. 2019. Pyrolysis, morphology and microwave absorption properties of tobacco stem materials. The Science of the Total Environment 683:341–50. doi: 10.1016/j.scitotenv.2019.04.053.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.